Last active
December 12, 2015 07:44
-
-
Save frasertweedale/f7be04d477879d3b681b to your computer and use it in GitHub Desktop.
Prism-based parser/printer experiment
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- This file is a parsing experiment | |
-- Copyright (C) 2015 Fraser Tweedale | |
-- | |
-- This software is free software: you can redistribute it and/or modify | |
-- it under the terms of the GNU Affero General Public License as published by | |
-- the Free Software Foundation, either version 3 of the License, or | |
-- (at your option) any later version. | |
-- | |
-- This program is distributed in the hope that it will be useful, | |
-- but WITHOUT ANY WARRANTY; without even the implied warranty of | |
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
-- GNU Affero General Public License for more details. | |
-- | |
-- You should have received a copy of the GNU Affero General Public License | |
-- along with this program. If not, see <http://www.gnu.org/licenses/>. | |
{-# LANGUAGE FlexibleContexts #-} | |
{-# LANGUAGE MultiParamTypeClasses #-} | |
{-# LANGUAGE RankNTypes #-} | |
module Grammar | |
( | |
-- | Running grammars | |
parse | |
-- | Grammar constructors and combinators | |
, satisfy | |
, symbol | |
, many | |
, many1 | |
, (<<*) | |
, (*>>) | |
, between | |
, literal | |
, def | |
, opt | |
, eof | |
, productG | |
, sumG | |
, replicateG | |
, bindG | |
, adapt | |
, adaptP | |
-- | 'Char' grammars | |
, charG | |
, integralG | |
) where | |
import Prelude hiding (print) | |
import Control.Applicative hiding (many, optional) | |
import Control.Monad ((>=>)) | |
import Data.Bifunctor (first) | |
import Data.Char (isDigit) | |
import Data.Monoid (Monoid, mempty) | |
import Numeric.Natural (Natural) | |
import Control.Lens | |
import Data.List.NonEmpty (NonEmpty(..), fromList, toList) | |
{-# ANN module ("HLint: ignore Use on" :: String) #-} | |
-- $setup | |
-- >>> import Data.Char (isAlpha, isLower, toLower, toUpper) | |
type Grammar s a = Prism' s (a, s) | |
satisfy :: Cons s s a a => (a -> Bool) -> Grammar s a | |
satisfy f = withPrism _Cons $ \bt seta -> | |
let | |
seta' s = case seta s of | |
Left s -> Left s | |
Right (a, s') -> if f a then Right (a, s') else Left s | |
in prism bt seta' | |
symbol :: (Cons s s a a, Eq a) => a -> Grammar s a | |
symbol a = satisfy (== a) | |
-- | Adapt the 'Grammar' with an 'Iso' | |
-- | |
-- >>> let g = many (satisfy isAlpha) . adapt reversed | |
-- >>> parse g "live!" | |
-- Just "evil" | |
-- >>> print g "evil" :: String | |
-- "live" | |
-- | |
adapt :: Bifunctor f | |
=> AnIso s t a b -> Iso (f s x) (f t y) (f a x) (f b y) | |
adapt p = bimapping p id | |
-- | Adapt the 'Grammar' with another 'Prism' | |
-- | |
-- >>> let shouting s = if all (not . isLower) s then Right (fmap toLower s) else Left s | |
-- >>> let g = many charG `adaptP` prism (fmap toUpper) shouting | |
-- >>> parse g "WOW!!!" | |
-- Just "wow!!!" | |
-- >>> parse g "meh" | |
-- Nothing | |
-- >>> print g "hello world" :: String | |
-- "HELLO WORLD" | |
-- | |
adaptP :: Grammar s a -> Prism' a b -> Grammar s b | |
adaptP g p = withPrism g $ \as sesa -> | |
withPrism p $ \ba aeab -> | |
let | |
bs (b, s) = as (ba b, s) | |
sesb = sesa >=> \(a, s') -> case aeab a of | |
Left _ -> Left s' | |
Right b -> Right (b, s') | |
in prism bs sesb | |
-- | Sequence two grammars and combine their results as a tuple | |
-- | |
-- >>> let g = productG integralG (many (satisfy isAlpha)) | |
-- >>> parse g "-10abc" | |
-- Just (-10,"abc") | |
-- >>> print g (42, "xyz") :: String | |
-- "42xyz" | |
-- | |
productG :: Grammar s a -> Grammar s b -> Grammar s (a, b) | |
productG p p' = withPrism p $ \as sesa -> | |
withPrism p' $ \bs sesb -> | |
let | |
as' ((a, b), s) = as (a, bs (b, s)) | |
sesa' = sesa >=> \(a, s') -> do | |
(b, s'') <- sesb s' | |
pure ((a, b), s'') | |
in prism as' sesa' | |
-- | Choice between two grammars | |
-- | |
-- >>> let g = sumG integralG (many (satisfy isAlpha)) | |
-- >>> parse g "-10!" | |
-- Just (Left (-10)) | |
-- >>> parse g "abc!" | |
-- Just (Right "abc") | |
-- >>> print g (Left 42) :: String | |
-- "42" | |
-- >>> print g (Right "xyz") :: String | |
-- "xyz" | |
-- | |
sumG :: Grammar s a -> Grammar s b -> Grammar s (Either a b) | |
sumG p1 p2 = withPrism p1 $ \as sesa -> | |
withPrism p2 $ \bs sesb -> | |
let | |
eabs (Left a, s) = as (a, s) | |
eabs (Right b, s) = bs (b, s) | |
seseab s = case sesa s of | |
Left _ -> first Right <$> sesb s | |
r -> first Left <$> r | |
in prism eabs seseab | |
-- | Run the grammar as many times as possible on the input, | |
-- returning or consuming a list. | |
-- | |
-- >>> let g = many (satisfy isAlpha) | |
-- >>> parse g "" | |
-- Just "" | |
-- >>> parse g "abc!" | |
-- Just "abc" | |
-- >>> print g "xyz" :: String | |
-- "xyz" | |
-- | |
many :: Grammar s a -> Grammar s [a] | |
many p = withPrism p $ \bt seta -> | |
let | |
bt' ([], s) = s | |
bt' (a:as, s) = bt (a, bt' (as, s)) | |
seta' s = case seta s of | |
Left s -> Right ([], s) | |
Right (a, s') -> first (a:) <$> seta' s' | |
in prism bt' seta' | |
-- | Run the grammar as many times as possible and at least once. | |
-- | |
-- >>> let g = many1 (satisfy isDigit) | |
-- >>> parse g "" | |
-- Nothing | |
-- >>> parse g "42" | |
-- Just ('4' :| "2") | |
-- >>> print g ('1' :| "23") :: String | |
-- "123" | |
-- | |
many1 :: Grammar s a -> Grammar s (NonEmpty a) | |
many1 g = productG g (many g) . adapt isoTupleNEL | |
-- | Sequence two grammars, ignoring the second value. | |
-- | |
-- >>> let g = integralG <<* literal '~' | |
-- >>> parse g "123~" | |
-- Just 123 | |
-- >>> parse g "123!" | |
-- Nothing | |
-- >>> print g 123 :: String | |
-- "123~" | |
-- | |
(<<*) :: Grammar s a -> Grammar s () -> Grammar s a | |
p <<* p' = withPrism p $ \as sesa -> | |
withPrism p' $ \bs sesb -> | |
let | |
as' (a, s) = as (a, bs ((), s)) | |
sesa' = sesa >=> \(a, s') -> do | |
((), s'') <- sesb s' | |
pure (a, s'') | |
in prism as' sesa' | |
-- | Sequence two grammars, ignoring the first value. | |
-- | |
-- >>> let g = literal '~' *>> integralG | |
-- >>> parse g "~123" | |
-- Just 123 | |
-- >>> parse g "123" | |
-- Nothing | |
-- >>> print g 123 :: String | |
-- "~123" | |
-- | |
(*>>) :: Grammar s () -> Grammar s a -> Grammar s a | |
p *>> p' = withPrism p $ \as sesa -> | |
withPrism p' $ \bs sesb -> | |
let | |
as' (b, s) = as ((), bs (b, s)) | |
sesa' = sesa >=> \((), s') -> do | |
(b, s'') <- sesb s' | |
pure (b, s'') | |
in prism as' sesa' | |
-- | Replicate a grammar N times | |
-- | |
-- >>> let g = replicateG 3 (satisfy isAlpha) | |
-- >>> parse g "ab3" | |
-- Nothing | |
-- >>> parse g "abc" | |
-- Just "abc" | |
-- >>> print g "abcd" :: String -- note there are FOUR dots | |
-- "abc" | |
-- >>> print g "ab" :: String -- can't do much about this | |
-- "ab" | |
-- | |
replicateG :: Natural -> Grammar s a -> Grammar s [a] | |
replicateG n g = withPrism g $ \as sesa -> | |
let | |
ass = ass' n | |
ass' 0 (_, s) = s | |
ass' _ ([], s) = s | |
ass' n' (x:xs, s) = as (x, ass' (n' - 1) (xs, s)) | |
sesas = sesas' n | |
sesas' 0 s = pure ([], s) | |
sesas' n' s = case sesa s of | |
Left s -> Left s | |
Right (a, s') -> first (a:) <$> sesas' (n' - 1) s' | |
in prism ass sesas | |
-- | Sequence a grammar based on functions that return the next | |
-- grammar and yield a determinant. | |
-- | |
-- >>> let g = bindG integralG (\n -> replicateG n (satisfy isAlpha)) (fromIntegral . length) | |
-- >>> parse g "3abc2de?" | |
-- Just "abc" | |
-- >>> parse g "3ab2de?" | |
-- Nothing | |
-- >>> parse (many g) "3abc2de1f?" | |
-- Just ["abc","de","f"] | |
-- >>> print (many g) ["hello", "world"] :: String | |
-- "5hello5world" | |
-- | |
bindG :: Grammar s a -> (a -> Grammar s b) -> (b -> a) -> Grammar s b | |
bindG g f ba = withPrism g $ \as sesa -> | |
let | |
bs (b, s) = let a = ba b in as (a, review (f a) (b, s)) | |
sesb s = case sesa s of | |
Left s -> Left s | |
Right (a, s') -> withPrism (f a) $ \_ sesb' -> sesb' s' | |
in prism bs sesb | |
-- | Given left and right "surrounding" grammars and an interior | |
-- grammar sequence all three, discarding the surrounds. | |
-- | |
-- >>> let g = between (literal '<') (literal '>') integralG | |
-- >>> parse g "<-123>" | |
-- Just (-123) | |
-- >>> print g 42 :: String | |
-- "<42>" | |
-- | |
between :: Grammar s () -> Grammar s () -> Grammar s a -> Grammar s a | |
between l r a = l *>> a <<* r | |
-- | Consumes or produces a literal character (mapped to '()'). | |
-- | |
-- >>> let g = literal '$' | |
-- >>> parse g "$~" | |
-- Just () | |
-- >>> print g () :: String | |
-- "$" | |
-- | |
literal :: (Cons s s a a, Eq a) => a -> Grammar s () | |
literal a = withPrism (symbol a) $ \sa sesa -> | |
prism (\((), s) -> cons a s) (fmap (first (const ())) . sesa) | |
-- | Give a default value for a grammar. | |
-- | |
-- A defaulted grammar can always be viewed. If a reviewed value | |
-- is equal to the default nothing is written. | |
-- | |
-- >>> let g = def 0 integralG | |
-- >>> parse g "1~" | |
-- Just 1 | |
-- >>> parse g "~" | |
-- Just 0 | |
-- >>> print g 1 :: String | |
-- "1" | |
-- >>> print g 0 :: String | |
-- "" | |
-- | |
def :: Eq a => a -> Grammar s a -> Grammar s a | |
def a' p = withPrism p $ \as sesa -> | |
let | |
as' (a, s) = if a == a' then s else as (a, s) | |
sesa' s = case sesa s of | |
Left e -> pure (a', s) | |
v@(Right _) -> v | |
in prism as' sesa' | |
-- | Make a grammar optional; a failed view yields 'Nothing' and | |
-- a review of 'Nothing' writes nothing. | |
-- | |
-- >>> let g = opt integralG | |
-- >>> parse g "1~" | |
-- Just (Just 1) | |
-- >>> parse g "~" | |
-- Just Nothing | |
-- >>> print g (Just 1) :: String | |
-- "1" | |
-- >>> print g Nothing :: String | |
-- "" | |
-- | |
opt :: Grammar s a -> Grammar s (Maybe a) | |
opt p = withPrism p $ \as sesa -> | |
let | |
as' (Just a, s) = as (a, s) | |
as' (Nothing, s) = s | |
sesa' s = case sesa s of | |
Left e -> pure (Nothing, s) | |
Right (a, s') -> Right (Just a, s') | |
in prism as' sesa' | |
-- | Matches at end of input; writes nothing | |
-- | |
-- >>> parse eof "" | |
-- Just () | |
-- >>> parse eof "~" | |
-- Nothing | |
-- >>> print eof () :: String | |
-- "" | |
-- | |
eof :: Cons s s a a => Grammar s () | |
eof = prism as sesa where | |
as ((), s) = s | |
sesa s = case uncons s of | |
Just _ -> Left s | |
Nothing -> Right ((), s) | |
-- | |
-- Isos | |
-- | |
isoReadShow :: (Read a, Show a) => Iso' String a | |
isoReadShow = iso read show | |
isoTupleNEL :: Iso' (a, [a]) (NonEmpty a) | |
isoTupleNEL = iso (uncurry (:|)) (\(h :| t) -> (h, t)) | |
-- | |
-- 'Char'-based grammars | |
-- | |
charG :: Cons s s Char Char => Grammar s Char | |
charG = satisfy (const True) | |
integralG | |
:: (Cons s s Char Char, Integral a, Read a, Show a) | |
=> Grammar s a | |
integralG = | |
let | |
f (Just c, s) = c:s | |
f (_, s) = s | |
g ('-' : s) = (Just '-', s) | |
g s = (Nothing, s) | |
in | |
(productG (opt (symbol '-')) (many (satisfy isDigit)) . adapt (iso f g)) | |
`adaptP` _Show | |
-- | Parse with a grammar, discarding any remaining input. | |
-- | |
-- If remaining input is an error, apply '(<<* eof)' | |
-- to your grammar first. | |
-- | |
parse :: Cons s s a a => Grammar s b -> s -> Maybe b | |
parse g s = fst <$> preview g s | |
-- | Print with a grammar | |
-- | |
print :: (Cons s s a a, Monoid s) => Grammar s b -> b -> s | |
print g b = review g (b, mempty) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment