Last active
March 23, 2017 08:38
-
-
Save fredRos/1be056502742dba0753828e7852f9986 to your computer and use it in GitHub Desktop.
Create integer partitions in multiplicity representation. Either all partitions of n or into exactly k parts. The basis is algorithm Z from A. Zoghbi: Algorithms for generating integer partitions, Ottawa (1993) http://dx.doi.org/10.20381/ruor-11312
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Copyright (c) 2017 Frederik Beaujean ([email protected]) | |
// Permission is hereby granted, free of charge, to any person obtaining a copy | |
// of this software and associated documentation files (the "Software"), to deal | |
// in the Software without restriction, including without limitation the rights | |
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
// copies of the Software, and to permit persons to whom the Software is | |
// furnished to do so, subject to the following conditions: | |
// The above copyright notice and this permission notice shall be included in all | |
// copies or substantial portions of the Software. | |
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
// SOFTWARE. | |
#include <cassert> | |
#include <algorithm> | |
#include <iostream> | |
#include <vector> | |
using namespace std; | |
using Int_t = int; | |
using vec = std::vector<Int_t>; | |
/* | |
* The output has to be filtered because Algorithm Z keeps higher | |
* coefficients so the naive \sum_i c_i*y_i may exceed `n`. | |
*/ | |
void filter_partition(vec& y, vec& c, const Int_t n) | |
{ | |
assert(y.size() == c.size()); | |
assert(y.size() > 0); | |
Int_t sum = 0; | |
for(size_t i=1; i < y.size(); ++i) { | |
// check if n already reached, then zero the rest | |
sum += c[i]*y[i]; | |
if (sum > n) { | |
fill(y.begin() + i, y.end(), 0.0); | |
fill(c.begin() + i, c.end(), 0.0); | |
break; | |
} | |
} | |
} | |
/* | |
* Print a partition of `n` in multiplicity representation. | |
* | |
* The output has to be filtered because Algorithm Z keeps higher | |
* coefficients so the naive sum may exceed `n`. | |
*/ | |
void print_partition(vec& y, vec& c, bool welcome=false) | |
{ | |
assert(y.size() == c.size()); | |
assert(y.size() > 0); | |
if (welcome) | |
cout << "sum_i c_i*y_i" << endl; | |
bool init = false; | |
for(size_t i=1; i < y.size(); ++i) { | |
// only print valid entries | |
if (c[i] > 0 && y[i] > 0) { | |
std::cout << (init? " + " : "") << c[i] << "*" << y[i]; | |
init = true; | |
} | |
} | |
std::cout << std::endl; | |
} | |
/*! | |
* Code up the update step inside the while loop of algorithm Z from | |
* | |
* A. Zoghbi: Algorithms for generating integer partitions, Ottawa (1993) | |
* | |
* to generate the next integer partition of `n` in multiplicity | |
* representation `\sum_i c_i * y_i` such that `c_i` is the | |
* multiplicity of part `y_i`. | |
* | |
*/ | |
void algorithmZ_update(const Int_t n, vec& y, vec& c, Int_t& h) | |
{ | |
assert(y.size() == c.size()); | |
assert(y.size() > 0); | |
// running index | |
Int_t i = h-1; | |
// calculated part | |
Int_t k = c[h]; | |
// calculated remainder | |
Int_t r = c[h] * y[h]; | |
// calculate the remainder | |
while (y[h] - y[i] < 2) { | |
k += c[i]; | |
r += c[i] * y[i]; | |
--i; | |
} | |
// update current part when it equals 1 | |
if (c[i] == 1) { | |
if (i != 0) { | |
r += c[i] * y[i]; | |
++y[i]; | |
} else { | |
i = 1; | |
y[i] = 1; | |
} | |
} | |
// update current part != 1 | |
else { | |
--c[i]; | |
r += y[i]; | |
++i; | |
y[i] = y[i-1] + 1; | |
} | |
// calculate next parts based on remainder left from previous update | |
c[i] = k; | |
r -= c[i] * y[i]; | |
h = i+1; | |
// update last modified part if it's the remainder | |
if (r == y[i]) { | |
++c[i]; | |
h = i; | |
} | |
// add new part with multiplicity 1 | |
else { | |
y[h] = r; | |
c[h] = 1; | |
} | |
filter_partition(y, c, n); | |
} | |
/*! | |
* Print all partitions of `n` in multiplicity representation where | |
* `c_i` is the multiplicity and `y_i` is the part. | |
* | |
* Based on the pseudocode of Algorithm Z in A. Zoghbi: Algorithms for | |
* generating integer partitions, Ottawa (1993), which generates all | |
* partitions of `n`. | |
* | |
* Example: partition(5) | |
sum_i c_i*y_i | |
1*5 | |
1*1 + 1*4 | |
1*2 + 1*3 | |
2*1 + 1*3 | |
1*1 + 2*2 | |
3*1 + 1*2 | |
5*1 | |
*/ | |
void partition(const Int_t n) | |
{ | |
assert(n > 0); | |
vec y(n+1, 0), c(n+1, 0); | |
// initialize | |
y[0] = -1; | |
c.at(0) = 1; | |
y.at(1) = n; | |
c[1] = 1; | |
// start with only one part | |
Int_t h = 1; | |
print_partition(y, c, true); | |
// quit if all parts are 1 | |
while (c[1] != n) { | |
algorithmZ_update(n, y, c, h); | |
print_partition(y, c); | |
} | |
} | |
/*! | |
* Print all partitions of `n` into exactly `s` parts in multiplicity | |
* representation where `c_i` is the multiplicity and `y_i` is the | |
* part. | |
* | |
* Based on the pseudocode of Algorithm Z in A. Zoghbi: Algorithms for | |
* generating integer partitions, Ottawa (1993), which generates all | |
* partitions of `n`. I made the necessary modifications to partition | |
* into `s` parts. | |
* | |
* Example: partition(8, 3) | |
sum_i c_i*y_i | |
2*1 + 1*6 | |
1*1 + 1*2 + 1*5 | |
1*1 + 1*3 + 1*4 | |
2*2 + 1*4 | |
1*2 + 2*3 | |
*/ | |
void partition(const Int_t n, const Int_t s) | |
{ | |
assert(n > 0); | |
assert(s > 0); | |
assert(n >= s); | |
// have at most s distinct parts + one buffer value at index 0 | |
vec y(s+1, 0), c(s+1, 0); | |
y[0] = -1; | |
c[0] = 1; | |
// h is the number of distinct parts | |
Int_t h = 0; | |
// the largest part of any partition of n into s parts | |
const auto maxPart = n-s+1; | |
// define initial partition | |
// If there is only one distinct part then maxPart divides n. But | |
// part(6,3) = 5+1 = 4+2 = 3+3 shows that it doesn't have to be | |
// the first partition, rather it is always the last in our order | |
// because it cannot be mutated further. So if first and last | |
// agree, there is only one partition. From a quick glance at the | |
// partition table or the recurrence relation defining it T(n, 1) | |
// = T(n, n) = 1, T(n, k) = 0 (k>n), T(n, k) = T(n-1, k-1) + | |
// T(n-k, k), this reduces the choices to s=1,n-1,n. But for | |
// s=n-1, the partition is n = (n-2)*1 + 1*2 so has two distinct | |
// parts if n > 2. For n=2, s=n-1=1 is no special case, and for | |
// n=1 all options collapse. | |
if (s == 1 || s == n) { | |
y[1] = maxPart; | |
c[1] = n / maxPart; | |
h = 1; | |
} else { | |
// initialize to the partition where the largest part has the | |
// maximum value and everything else is 1. There are two | |
// distinct parts | |
y[1] = 1; | |
c[1] = s-1; | |
y[2] = maxPart; | |
c[2] = 1; | |
h = 2; | |
} | |
print_partition(y, c, true); | |
// quit if all parts differ by at most one | |
while (y[h] - y[1] > 1) { | |
algorithmZ_update(n, y, c, h); | |
print_partition(y, c); | |
} | |
} | |
int main() | |
{ | |
partition(6); | |
cout << "-------------\n"; | |
for (Int_t i=1; i <= 6; ++i) | |
partition(6, i); | |
return 0; | |
} | |
// Local Variables: | |
// compile-command:"g++ -std=c++11 -g -O2 partitions.cxx -o partitions && ./partitions" | |
// End: |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment