Created
November 15, 2025 03:05
-
-
Save friendly/7cd853ced1eeae3b3a91b64205163743 to your computer and use it in GitHub Desktop.
demonstration plots for discriminant analysis
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #' --- | |
| #' title: discriminant analysis demo | |
| #' author: Michael Friendly | |
| #' --- | |
| library(MASS) | |
| library(ggplot2) | |
| #library(candisc) | |
| library(dplyr) | |
| # Parameters: two groups with different means, but same covariance matrix | |
| set.seed(1234) | |
| n <- 100 | |
| mu1 <- c(3,4) | |
| mu2 <- c(6,2) | |
| Sigma <- matrix(c(2, 1, 1, 2), 2,2) | |
| # create the two datasets | |
| X1 <- mvrnorm(n, mu1, Sigma) |> | |
| as.data.frame() |> | |
| setNames(nm = c("y1", "y2")) |> | |
| cbind(group = "A") | |
| X2 <- mvrnorm(n, mu2, Sigma) |> | |
| as.data.frame() |> | |
| setNames(nm = c("y1", "y2")) |> | |
| cbind(group = "B") | |
| X <- rbind(X1, X2) | |
| # get the sample means for use in plots | |
| means <- X |> | |
| summarise(y1 = mean(y1), | |
| y2 = mean(y2), .by = group) | |
| means_wide <- means |> | |
| pivot_wider(names_from = group, | |
| values_from = y1:y2, | |
| names_vary = "slowest") | |
| means_all <- X |> | |
| summarise(y1 = mean(y1), | |
| y2 = mean(y2)) | |
| # -------------------------------------- | |
| # Plot 1: scatterplot with data ellipses | |
| # -------------------------------------- | |
| ggplot(data = X, | |
| aes(y1, y2, | |
| color = group, shape = group, fill = group)) + | |
| geom_point(size = 2, alpha = 0.8) + | |
| geom_point(data = means, | |
| shape = "+", size = 10, color = "black") + | |
| geom_text(data = means, | |
| aes(label = group), | |
| size = 8, | |
| color = "black", | |
| nudge_y = 0.5) + | |
| stat_ellipse(geom = "polygon", alpha = 0.3, level = 0.68) + | |
| geom_segment(data = means_wide, | |
| aes(x = y1_A, y = y2_A, | |
| xend = y1_B, yend = y2_B), | |
| inherit.aes = FALSE, | |
| linewidth = 2) + | |
| geom_point(data = means_all, | |
| aes(y1, y2), | |
| size = 3, | |
| inherit.aes = FALSE) + | |
| coord_equal() + | |
| theme_bw(base_size = 16) + | |
| theme(legend.position = "none") + | |
| theme( | |
| panel.background = element_rect(fill = "transparent"), | |
| plot.background = element_rect(fill = "transparent", color = NA) | |
| ) | |
| ggsave("images/discrim-demo1.png", | |
| height = 6, width = 6, | |
| dpi = 200) | |
| # ------------------------------------------- | |
| # plot 2 densities of the discriminant scores | |
| # ------------------------------------------- | |
| X.lda <- lda(group ~ ., data = X) | |
| X.pred <- predict_discrim(X.lda, scores = TRUE, post=FALSE) | |
| # density plot of LD1 | |
| # | |
| meanLD <- X.pred |> | |
| select(group, LD1) |> | |
| summarize(LD1 = mean(LD1), .by = group) | |
| ggplot(data = X.pred, | |
| aes(x = LD1, | |
| color = group, shape = group, fill = group)) + | |
| geom_density(alpha = 0.3) + | |
| geom_label(data = meanLD, | |
| aes(label = group), | |
| y = .2, | |
| size = 8, | |
| color = "black") + | |
| theme_classic(base_size = 14) + | |
| theme(legend.position = "none") + | |
| theme( | |
| axis.title.y = element_blank(), | |
| axis.text.y = element_blank(), | |
| axis.ticks.y = element_blank(), | |
| panel.background = element_rect(fill = "transparent"), | |
| plot.background = element_rect(fill = "transparent", color = NA) | |
| ) | |
| ggsave("images/discrim-demo2.png", | |
| height = 4.75, width = 15.25, units = "cm", | |
| dpi = 200) | |
| # plot_discrim(X.lda, y2 ~ y1, | |
| # showgrid = "none", ellipse = TRUE) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment