Created
September 16, 2017 07:35
-
-
Save frizz925/ea2e4f92d358b51ac8ff6d5385622a02 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
np.random.seed(1) | |
inputs = np.array([ | |
[0, 0, 1], | |
[0, 1, 1], | |
[1, 0, 1], | |
[1, 1, 1] | |
]) | |
outputs = np.vstack([0, 1, 1, 0]) | |
inputSize = 3 | |
hiddenSize = 3 | |
outputSize = 1 | |
class Layer: | |
def __init__(self, weights, biases): | |
self.weights = weights | |
self.biases = biases | |
self.outputs = None | |
self.inputs = None | |
W1 = 2 * np.random.randn(inputSize, hiddenSize) - 1 | |
b1 = 2 * np.random.randn(hiddenSize) - 1 | |
W2 = 2 * np.random.randn(hiddenSize, outputSize) - 1 | |
b2 = 2 * np.random.randn(outputSize) - 1 | |
layers = [ | |
Layer(W1, b1), | |
Layer(W2, b2) | |
] | |
def sigmoid(x): | |
return 1 / (1 + np.exp(-x)) | |
def desigmoid(x): | |
return x * (1 - x) | |
def forwardPropagate(inputs, layer): | |
layer.inputs = inputs | |
layer.outputs = sigmoid(np.dot(inputs, layer.weights) + layer.biases) | |
return layer.outputs | |
def backwardPropagate(layer, error): | |
delta = error * desigmoid(layer.outputs) | |
return delta | |
def meanSquareError(predicted, outputs): | |
return np.sum(0.5 * (outputs - predicted)**2, axis=1) | |
def predict(inputs): | |
# forward propagate | |
predicted = inputs | |
for layer in layers: | |
predicted = forwardPropagate(predicted, layer) | |
return predicted | |
def train(predicted, expected): | |
# back propagate | |
error = expected - predicted | |
for layer in layers[::-1]: | |
delta = backwardPropagate(layer, error) | |
error = delta.dot(layer.weights.T) | |
layer.weights += layer.inputs.T.dot(delta) | |
for i in range(60000): | |
predicted = predict(inputs) | |
loss = meanSquareError(predicted, outputs) | |
if i % 10000 == 0: | |
print("Error:", np.round(loss, 2)) | |
train(predicted, outputs) | |
print("Inputs:", inputs) | |
print("Predicted:", predict(inputs)) | |
print("Expected:", outputs) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment