Created
September 11, 2023 16:23
-
-
Save fsndzomga/015616e931d58ca1072b13acd8a1299c to your computer and use it in GitHub Desktop.
Data enrichment case 1
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.datasets import fetch_20newsgroups | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.naive_bayes import MultinomialNB | |
from sklearn import metrics | |
import numpy as np | |
import os | |
import pdb | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
import torch | |
# Initialize GPT-2 model and tokenizer | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
model = GPT2LMHeadModel.from_pretrained("gpt2") | |
categories = ['alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space'] | |
newsgroups_train = fetch_20newsgroups(subset='train', | |
remove=('headers', 'footers', 'quotes'), | |
categories=categories) | |
data = newsgroups_train.data | |
newsgroups_train_enriched = [] | |
def process_text(index, text): | |
elt = text.split(" ") | |
if len(elt) > 2000: | |
elt = elt[:2000] | |
text = ' '.join(elt) | |
prompt = f"Give one category to the following text: {text}. The category should be among this list: {categories}" | |
# Tokenize input and get token count | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True) | |
input_token_count = inputs["input_ids"].shape[1] | |
# Calculate remaining token space for the output | |
remaining_token_space = 800 - input_token_count | |
try: | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_length=800, pad_token_id=tokenizer.eos_token_id) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
print(f"Processed index: {index}") | |
return text + ' ' + response.split(":")[-1] # Assuming the response contains the category after ":" | |
except Exception as e: | |
print(f"Exception at index {index}: {e}") | |
return None | |
with ThreadPoolExecutor(max_workers=5) as executor: | |
futures = {executor.submit(process_text, index, text): index for index, text in enumerate(data)} | |
for future in as_completed(futures): | |
result = future.result() | |
if result is not None: | |
newsgroups_train_enriched.append(result) | |
# Continue with your existing code | |
vectorizer = TfidfVectorizer() | |
vectors = vectorizer.fit_transform(newsgroups_train_enriched) | |
clf = MultinomialNB(alpha=.01) | |
clf.fit(vectors, newsgroups_train.target) | |
newsgroups_test = fetch_20newsgroups(subset='test', | |
remove=('headers', 'footers', 'quotes'), | |
categories=categories) | |
vectors_test = vectorizer.transform(newsgroups_test.data) | |
pred = clf.predict(vectors_test) | |
print(metrics.f1_score(pred, newsgroups_test.target, average='macro')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment