Skip to content

Instantly share code, notes, and snippets.

@fsndzomga
Created September 18, 2023 22:56
Show Gist options
  • Save fsndzomga/2407224ba32f5d756dadf626fcb95f35 to your computer and use it in GitHub Desktop.
Save fsndzomga/2407224ba32f5d756dadf626fcb95f35 to your computer and use it in GitHub Desktop.
using the transformers library for sentiment analysis
from transformers import pipeline
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import pandas as pd
df = pd.read_csv('amazon_cells_labelled.txt', delimiter='\t', header=None, names=['Review', 'Sentiment'])
classifier = pipeline("sentiment-analysis")
predicted_sentiments = []
for index, row in df.iterrows():
result = classifier(row['Review'])
if result[0]['label'] == 'POSITIVE':
sentiment = 1
else:
sentiment = 0
predicted_sentiments.append(sentiment)
df['predicted_sentiment'] = predicted_sentiments
# Evaluate the performance using accuracy, confusion matrix, and classification report
accuracy = accuracy_score(df['Sentiment'], df['predicted_sentiment'])
conf_matrix = confusion_matrix(df['Sentiment'], df['predicted_sentiment'])
class_report = classification_report(df['Sentiment'], df['predicted_sentiment'])
accuracy, conf_matrix, class_report
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment