Created
September 9, 2023 23:17
-
-
Save fsndzomga/2cbcfdbdd35935d41cb3753a6009a713 to your computer and use it in GitHub Desktop.
Reinforcement learning Maze
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tkinter as tk | |
import pandas as pd | |
import numpy as np | |
import time | |
class QLearningTable: | |
# Initialize parameters and create a Q-table | |
def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9): | |
self.actions = actions | |
self.lr = learning_rate | |
self.gamma = reward_decay | |
self.epsilon = e_greedy | |
self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64) | |
def choose_action(self, observation): | |
self.check_state_exist(observation) | |
if np.random.uniform() < self.epsilon: | |
state_action = self.q_table.loc[observation, :] | |
action = np.random.choice(state_action[state_action == np.max(state_action)].index) | |
else: | |
action = np.random.choice(self.actions) | |
return action | |
def learn(self, s, a, r, s_): | |
self.check_state_exist(s_) | |
q_predict = self.q_table.loc[s, a] | |
if s_ != 'terminal': | |
q_target = r + self.gamma * self.q_table.loc[s_, :].max() | |
else: | |
q_target = r | |
self.q_table.loc[s, a] += self.lr * (q_target - q_predict) | |
def check_state_exist(self, state): | |
if state not in self.q_table.index: | |
self.q_table = self.q_table.append( | |
pd.Series( | |
[0]*len(self.actions), | |
index=self.q_table.columns, | |
name=state, | |
) | |
) | |
class Maze(tk.Tk): | |
def __init__(self): | |
super(Maze, self).__init__() | |
self.action_space = ['u', 'd', 'l', 'r'] | |
self.n_actions = len(self.action_space) | |
self.title('maze') | |
self.geometry('{0}x{1}'.format(4 * 40, 4 * 40)) | |
self.build_maze() | |
def build_maze(self): | |
self.canvas = tk.Canvas(self, bg='white', | |
height=4 * 40, | |
width=4 * 40) | |
for c in range(0, 4 * 40, 40): | |
x0, y0, x1, y1 = c, 0, c, 4 * 40 | |
self.canvas.create_line(x0, y0, x1, y1) | |
for r in range(0, 4 * 40, 40): | |
x0, y0, x1, y1 = 0, r, 4 * 40, r | |
self.canvas.create_line(x0, y0, x1, y1) | |
# origin | |
origin = np.array([60, 60]) # middle of maze (1, 1) | |
self.rect = self.canvas.create_rectangle( | |
origin[0] - 15, origin[1] - 15, | |
origin[0] + 15, origin[1] + 15, | |
fill='red') | |
# hell | |
hell_center = np.array([100, 100]) # center of maze (2, 2) | |
self.hell = self.canvas.create_rectangle( | |
hell_center[0] - 15, hell_center[1] - 15, | |
hell_center[0] + 15, hell_center[1] + 15, | |
fill='black') | |
# goal | |
oval_center = np.array([140, 140]) # bottom of maze (3, 3) | |
self.oval = self.canvas.create_oval( | |
oval_center[0] - 15, oval_center[1] - 15, | |
oval_center[0] + 15, oval_center[1] + 15, | |
fill='yellow') | |
self.canvas.pack() | |
def reset(self): | |
self.update() | |
time.sleep(0.5) | |
self.canvas.delete(self.rect) | |
origin = np.array([60, 60]) | |
self.rect = self.canvas.create_rectangle( | |
origin[0] - 15, origin[1] - 15, | |
origin[0] + 15, origin[1] + 15, | |
fill='red') | |
return self.canvas.coords(self.rect) | |
def step(self, action): | |
s = self.canvas.coords(self.rect) | |
base_action = np.array([0, 0]) | |
if action == 'u': | |
if s[1] > 40: | |
base_action[1] -= 40 | |
elif action == 'd': | |
if s[1] < (4 - 1) * 40: | |
base_action[1] += 40 | |
elif action == 'r': | |
if s[0] < (4 - 1) * 40: | |
base_action[0] += 40 | |
elif action == 'l': | |
if s[0] > 40: | |
base_action[0] -= 40 | |
self.canvas.move(self.rect, base_action[0], base_action[1]) | |
s_ = self.canvas.coords(self.rect) | |
if s_ == self.canvas.coords(self.oval): | |
reward = 1 | |
done = True | |
s_ = 'terminal' | |
elif s_ == self.canvas.coords(self.hell): | |
reward = -1 | |
done = True | |
s_ = 'terminal' | |
else: | |
reward = 0 | |
done = False | |
return s_, reward, done | |
def render(self): | |
time.sleep(0.1) | |
self.update() | |
def update(): | |
for episode in range(100): | |
observation = env.reset() | |
while True: | |
env.render() | |
action = RL.choose_action(str(observation)) | |
observation_, reward, done = env.step(action) | |
RL.learn(str(observation), action, reward, str(observation_)) | |
observation = observation_ | |
if done: | |
break | |
print("Game over!") | |
env.destroy() | |
if __name__ == '__main__': | |
env = Maze() | |
RL = QLearningTable(actions=list(env.action_space)) | |
env.after(100, update) | |
env.mainloop() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment