Created
September 7, 2023 16:17
-
-
Save fsndzomga/5eac54df171f17248a7cb06575d8dac3 to your computer and use it in GitHub Desktop.
rl simple
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import time | |
np.random.seed(2) # reproducible | |
ROWS, COLS = 2, 2 # dimensions of the 2D world | |
ACTIONS = ['left', 'right', 'up', 'down'] # available actions | |
EPSILON = 0.9 # greedy policy | |
ALPHA = 0.1 # learning rate | |
GAMMA = 0.9 # discount factor | |
MAX_EPISODES = 100 # maximum episodes | |
FRESH_TIME = 0.3 # fresh time for one move | |
def build_q_table(rows, cols, actions): | |
state_size = rows * cols | |
table = pd.DataFrame( | |
np.zeros((state_size, len(actions))), | |
columns=actions, | |
) | |
return table | |
def choose_action(state, q_table): | |
state_actions = q_table.iloc[state, :] | |
if (np.random.uniform() > EPSILON) or ((state_actions == 0).all()): | |
action_name = np.random.choice(ACTIONS) | |
else: | |
action_name = state_actions.idxmax() | |
return action_name | |
def get_env_feedback(S, A, grid): | |
row, col = divmod(S, COLS) | |
R = 0 | |
if A == 'up' and row > 0: | |
R = -1 if grid[row][col] < grid[row-1][col] else 1 | |
grid[row][col], grid[row-1][col] = grid[row-1][col], grid[row][col] | |
S_ = S - COLS | |
elif A == 'down' and row < ROWS - 1: | |
R = -1 if grid[row][col] < grid[row+1][col] else 1 | |
grid[row][col], grid[row+1][col] = grid[row+1][col], grid[row][col] | |
S_ = S + COLS | |
elif A == 'left' and col > 0: | |
R = -1 if grid[row][col] < grid[row][col-1] else 1 | |
grid[row][col], grid[row][col-1] = grid[row][col-1], grid[row][col] | |
S_ = S - 1 | |
elif A == 'right' and col < COLS - 1: | |
R = -1 if grid[row][col] < grid[row][col+1] else 1 | |
grid[row][col], grid[row][col+1] = grid[row][col+1], grid[row][col] | |
S_ = S + 1 | |
else: | |
S_ = S | |
return S_, R | |
def update_env(grid, episode, step_counter): | |
print(f'\rEpisode {episode+1}: total_steps = {step_counter}') | |
for row in grid: | |
print(' '.join(map(str, row))) | |
time.sleep(FRESH_TIME) | |
def rl(): | |
q_table = build_q_table(ROWS, COLS, ACTIONS) | |
for episode in range(MAX_EPISODES): | |
step_counter = 0 | |
grid = np.random.choice(range(1, ROWS*COLS+1), (ROWS, COLS), replace=False) | |
S = np.random.randint(0, ROWS * COLS) | |
update_env(grid, episode, step_counter) | |
while True: | |
A = choose_action(S, q_table) | |
S_, R = get_env_feedback(S, A, grid) | |
q_predict = q_table.loc[S, A] | |
q_target = R + GAMMA * q_table.iloc[S_, :].max() | |
q_table.loc[S, A] += ALPHA * (q_target - q_predict) | |
S = S_ | |
step_counter += 1 | |
update_env(grid, episode, step_counter) | |
# Check if the grid is sorted to terminate | |
if np.all(grid == np.sort(grid, axis=None).reshape(ROWS, COLS)): | |
break | |
return q_table | |
if __name__ == "__main__": | |
q_table = rl() | |
print('\r\nQ-table:\n') | |
print(q_table) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment