Created
September 29, 2023 23:00
-
-
Save fsndzomga/6e363c4e485c986ac085bef6341fd095 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Responder(): | |
def __init__(self, index) -> None: | |
self.llm = OpenaiLanguageModel(anonymize=False) | |
self.index = index | |
def text_to_embedding(self, text): | |
""" | |
Generate an embedding for the given text using BERT. | |
Parameters: | |
- text (str): The input text. | |
Returns: | |
- list: The embedding of the input text. | |
""" | |
# Load pre-trained BERT tokenizer and model | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertModel.from_pretrained('bert-base-uncased') | |
# Tokenize the input text and get the BERT embeddings | |
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Use mean pooling to get sentence embeddings | |
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().tolist() | |
return embedding | |
def __call__(self, question) -> Any: | |
vector = self.text_to_embedding(question) | |
context = self.index.query( | |
vector=vector, | |
top_k=100, | |
include_metadata=True, | |
) | |
# Extract chunk texts | |
chunks = [match['metadata']['chunk'] for match in context['matches']] | |
# Merge chunks into a single text | |
merged_text = ' '.join(chunks) | |
prompt = f""" | |
Answer this question: {question}, using these informations from the document: {merged_text} | |
""" | |
response = self.llm.generate(prompt) | |
return response |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment