Created
September 18, 2023 22:20
-
-
Save fsndzomga/ae8f28f89b7c59f2b17c27c2b9f1b321 to your computer and use it in GitHub Desktop.
Byte Pair Encoding Algorithm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import Counter, defaultdict | |
import re | |
def get_stats(vocab): | |
pairs = Counter() | |
for word, freq in vocab.items(): | |
symbols = word.split() | |
for i in range(len(symbols) - 1): | |
pairs[symbols[i], symbols[i + 1]] += freq | |
return pairs | |
def merge_vocab(pair, vocab): | |
new_vocab = defaultdict(int) | |
bigram = ' '.join(pair) | |
replacement = ''.join(pair) | |
pattern = re.escape(bigram) | |
for word in vocab: | |
new_word = re.sub(pattern, replacement, word) | |
new_vocab[new_word] = vocab[word] | |
return new_vocab | |
def get_vocab(text): | |
# Get initial vocabulary from text (with frequency count) | |
vocab = Counter(text.split()) | |
return {' '.join(word): freq for word, freq in vocab.items()} | |
def bpe(text, num_merges=10): | |
vocab = get_vocab(text) | |
for i in range(num_merges): | |
pairs = get_stats(vocab) | |
if not pairs: | |
break | |
best_pair = max(pairs, key=pairs.get) | |
vocab = merge_vocab(best_pair, vocab) | |
return vocab | |
# Example text corpus | |
text_corpus = "put your corpus here" | |
# Number of merge operations | |
num_merges = 10 | |
# Apply BPE algorithm | |
result_vocab = bpe(text_corpus, num_merges=num_merges) | |
result_vocab |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment