Created
September 11, 2023 16:24
-
-
Save fsndzomga/ce897681a517b56732dae0a468024f65 to your computer and use it in GitHub Desktop.
Data enrichment using gpt3 via anonllm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.datasets import fetch_20newsgroups | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.naive_bayes import MultinomialNB | |
from sklearn import metrics | |
import numpy as np | |
import time | |
from anonLLM.llm import OpenaiLanguageModel | |
from keys import OPENAI_API_KEY | |
import os | |
import pdb | |
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY | |
llm = OpenaiLanguageModel() | |
categories = ['alt.atheism', 'talk.religion.misc', | |
'comp.graphics', 'sci.space'] | |
newsgroups_train = fetch_20newsgroups(subset='train', | |
remove=('headers', 'footers', 'quotes'), | |
categories=categories) | |
newsgroups_train_enriched = [] | |
data = newsgroups_train.data | |
for index in range(len(data)): | |
elt = data[index].split(" ") | |
if len(elt) > 2000: | |
elt = elt[:2000] | |
text = ' '.join(elt) | |
prompt = f"Give one category to the following text: {text}. The category should be among this list: {categories}" | |
try: | |
response = llm.generate(prompt) | |
print(index) | |
except: | |
pdb.set_trace() | |
newsgroups_train_enriched.append(text+response[0]) | |
time.sleep(5) | |
pdb.set_trace() | |
vectorizer = TfidfVectorizer() | |
vectors = vectorizer.fit_transform(newsgroups_train_enriched) | |
clf = MultinomialNB(alpha=.01) | |
clf.fit(vectors, newsgroups_train.target) | |
newsgroups_test = fetch_20newsgroups(subset='test', | |
remove=('headers', 'footers', 'quotes'), | |
categories=categories) | |
vectors_test = vectorizer.transform(newsgroups_test.data) | |
pred = clf.predict(vectors_test) | |
print(metrics.f1_score(pred, newsgroups_test.target, average='macro')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment