Created
September 8, 2023 00:03
-
-
Save fsndzomga/ef17fba4d4d78d7351a6cf8eeffcad00 to your computer and use it in GitHub Desktop.
Q learning basics
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import time | |
class QLearningAgent: | |
def __init__(self, n_states, actions, epsilon, alpha, gamma, max_episodes, fresh_time): | |
self.n_states = n_states | |
self.actions = actions | |
self.epsilon = epsilon | |
self.alpha = alpha | |
self.gamma = gamma | |
self.max_episodes = max_episodes | |
self.fresh_time = fresh_time | |
self.q_table = self.build_q_table() | |
def build_q_table(self): | |
table = pd.DataFrame( | |
np.zeros((self.n_states, len(self.actions))), | |
columns=self.actions, | |
) | |
return table | |
def choose_action(self, state): | |
state_actions = self.q_table.iloc[state, :] | |
if (np.random.uniform() > self.epsilon) or ((state_actions == 0).all()): | |
return np.random.choice(self.actions) | |
else: | |
return state_actions.idxmax() | |
def get_env_feedback(self, S, A): | |
if A == 'right': | |
if S == self.n_states - 2: | |
return 'terminal', 1 | |
else: | |
return S + 1, 0 | |
else: | |
if S == 0: | |
return S, 0 | |
else: | |
return S - 1, 0 | |
def update_env(self, S, episode, step_counter): | |
env_list = ['-'] * (self.n_states - 1) + ['T'] | |
if S == 'terminal': | |
interaction = f'Episode {episode + 1}: total_steps = {step_counter}' | |
print(f'\r{interaction}', end='') | |
time.sleep(2) | |
print('\r ', end='') | |
else: | |
env_list[S] = 'o' | |
interaction = ''.join(env_list) | |
print(f'\r{interaction}', end='') | |
time.sleep(self.fresh_time) | |
def run(self): | |
for episode in range(self.max_episodes): | |
step_counter = 0 | |
S = 0 | |
is_terminated = False | |
self.update_env(S, episode, step_counter) | |
while not is_terminated: | |
A = self.choose_action(S) | |
S_, R = self.get_env_feedback(S, A) | |
q_predict = self.q_table.loc[S, A] | |
if S_ != 'terminal': | |
q_target = R + self.gamma * self.q_table.iloc[S_, :].max() | |
else: | |
q_target = R | |
is_terminated = True | |
self.q_table.loc[S, A] += self.alpha * (q_target - q_predict) | |
S = S_ | |
self.update_env(S, episode, step_counter + 1) | |
step_counter += 1 | |
print('\r\nQ-table:\n') | |
print(self.q_table) | |
if __name__ == "__main__": | |
np.random.seed(2) | |
agent = QLearningAgent(n_states=6, | |
actions=['left', 'right'], | |
epsilon=0.9, | |
alpha=0.1, | |
gamma=0.9, | |
max_episodes=13, | |
fresh_time=0.3) | |
agent.run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment