Last active
November 28, 2020 05:45
-
-
Save fuad021/0d3c432338875ca7ffd21860f8d42c16 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
# ============================================= | |
# Author: Fuad Al Abir | |
# Date: 22 Feb 2020 | |
# Problem: K-Means | |
# Course: CSE 3210 | |
# ============================================= | |
def initCenter(_dataList, k): | |
_centerList = [] | |
for _ in range(k): | |
_centerList.append(_dataList[_]) | |
return _centerList | |
def updateCenter(_clusterList): | |
_centerList = [] | |
for i in range(len(set(_clusterList))): | |
sum = 0 | |
n = 0 | |
for j in range(len(_clusterList)): | |
if i == _clusterList[j]: | |
sum += _dataList[j] | |
n += 1 | |
_centerList.append(sum/n) | |
return _centerList | |
def dist(dataPoint, center): | |
distance = dataPoint - center | |
if distance < 0: return -distance | |
else: return distance | |
def distList(_dataList, center): | |
_distList = [] | |
for _ in range(len(_dataList)): | |
_distList.append(dist(_dataList[_], center)) | |
return _distList | |
def dist2DList(_dataList, _centerList): | |
_dist2DList = [] | |
for i in range(len(_centerList)): | |
_dist2DList.append(distList(_dataList, _centerList[i])) | |
return _dist2DList | |
def clusterList(_dist2DList, k): | |
_clusterList = [] | |
for _ in range(len(_dist2DList[0])): | |
min = 999 | |
c = k + 1 | |
for j in range(k): | |
if min > _dist2DList[j][_]: | |
min = _dist2DList[j][_] | |
c = j | |
_clusterList.append(c) | |
return _clusterList | |
def iteration(_dataList, _clusterList, k): | |
_centerList = updateCenter(_clusterList) | |
_dist2DList = dist2DList(_dataList, _centerList) | |
return clusterList(_dist2DList, k) | |
def initCluster(_datalist, k): | |
_centerList = initCenter(_dataList, k) | |
_dist2DList = dist2DList(_dataList, _centerList) | |
return clusterList(_dist2DList, k) | |
def kMeans(_dataList, k, plot_each_step = False): | |
if k > len(_dataList): | |
print("ERROR: k > size of data.") | |
return | |
_clusterList = initCluster(_dataList, k) | |
step = 0 | |
while(True): | |
step += 1 | |
if plot_each_step: | |
plotClusters(_clusterList, step) | |
_clusterListNew = iteration(_dataList, _clusterList, k) | |
if _clusterListNew == _clusterList: | |
if (plot_each_step == False): | |
plotClusters(_clusterList, step) | |
return _clusterList, step | |
else: | |
_clusterList = _clusterListNew | |
def predictCluster(_clusterList, point, prediction=True): | |
_dist = [] | |
for _ in range(len(set(_clusterList))): | |
cluster = [] | |
for i in range(len(_clusterList)): | |
if _ == _clusterList[i]: | |
cluster.append(_dataList[i]) | |
_dist.append(sum(distList(cluster, point))) | |
predCluster = _dist.index(min(_dist)) | |
plotClusters(_clusterList, step=0, point=point, prediction=predCluster) | |
return predCluster | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
sns.set_style("whitegrid") | |
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] | |
def plotClusters(_clusterList, step, point=False, prediction=False): | |
k = len(set(_clusterList)) | |
cluster = [] | |
mean = [] | |
for i in range(k): | |
x = [] | |
y = [] | |
for j in range(len(_clusterList)): | |
if i == _clusterList[j]: | |
x.append(_dataList[j]) | |
mean.append(sum(x)/len(x)) | |
cluster.append(x) | |
fig = plt.figure() | |
ax1 = fig.add_subplot(111) | |
for _ in range(k): | |
if _ >= len(colors): | |
c = 0 | |
c = _%len(colors) | |
else: | |
c = _ | |
ax1.scatter(cluster[_], cluster[_], color = colors[c]) | |
for _ in range(k): | |
c = 0 | |
if _ >= len(colors): | |
c = _%len(colors) | |
else: | |
c = _ | |
ax1.scatter(mean[_], mean[_], marker = "x", color = colors[c], s = 100) | |
title = 'k:' + str(k) + ' Step:' + str(step) | |
ax1.set_title(title, fontdict = {'fontsize':15}) | |
if prediction and point: | |
ax1.scatter(point, point, marker=',', color = colors[prediction], s = 200) | |
title = 'Cluster Prediction: ' + str(prediction) | |
ax1.set_title(title, fontdict = {'fontsize':15}) | |
plt.show() | |
def plotKs(high_k, plot_each_step=True): | |
for _ in range(2, high_k): | |
_clusterList, step = kMeans(_dataList, _, plot_each_step) | |
_dataList = [2, 4, 10, 12, 3, 20, 30, 11, 25] | |
k = 2 | |
_clusterList, step = kMeans(_dataList, k, plot_each_step=True) | |
# plotKs(10, plot_each_step=False) | |
_ = predictCluster(_clusterList, 14.99) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment