Skip to content

Instantly share code, notes, and snippets.

@fusaroli
Created May 6, 2022 12:47
Show Gist options
  • Save fusaroli/6bee3980375c2d972b4ce965297e853e to your computer and use it in GitHub Desktop.
Save fusaroli/6bee3980375c2d972b4ce965297e853e to your computer and use it in GitHub Desktop.
library(tidyverse)
library(brms)
library(patchwork)
## Define amount of data
items <- 30
chains <- 5
raters <- 30
## Define parameter values
GenerationB <- .4
sigma_raters <- .4
sigma_items <- .4
sigma_chains <- .2
# Create dataset with stimuli, with generation and chain ids
d_items <- tibble(
item = 1:items,
item_intercept = rnorm(items, 0, sigma_items),
generation = rep(-1:1, 10),
chain = rep(seq(chains), each = items/chains),
chain_slope = NA
)
chain_slope = rnorm(chains, 0, sigma_chains)
for (i in seq(items)) {
d_items$chain_slope[i] <- chain_slope[d_items$chain[i]]
}
# Create dataset with raters
d_raters <- tibble(
ID = 1:raters,
rater_slope = rnorm(raters, 0, sigma_raters)
)
## Now create all possible combinations between the stimuli
combinations <- t(combn(1:items, 2))
df_recovery <- NULL
for (rater in seq(raters)) {
print(rater)
temp <- tibble(
stimulusR = combinations[,1],
stimulusL = combinations[,2],
chainR = NA,
chainL = NA,
generationR = NA,
generationL = NA,
intR = NA,
intL = NA
)
for (i in seq(nrow(combinations))) {
temp$chainR[i] <- d_items$chain[temp$stimulusR[i]]
temp$chainL[i] <- d_items$chain[temp$stimulusL[i]]
temp$generationR[i] <- d_items$generation[temp$stimulusR[i]]
temp$generationL[i] <- d_items$generation[temp$stimulusL[i]]
temp$intR[i] <- d_items$item_intercept[temp$stimulusR[i]] +
(GenerationB + d_items$chain_slope[temp$stimulusR[i]] +
d_raters$rater_slope[rater]) * d_items$generation[temp$stimulusR[i]]
temp$intL[i] <- d_items$item_intercept[temp$stimulusL[i]] +
(GenerationB + d_items$chain_slope[temp$stimulusL[i]] +
d_raters$rater_slope[rater]) * d_items$generation[temp$stimulusL[i]]
temp$diff[i] = temp$intR[i] - temp$intL[i]
temp$thetaR[i] = inv_logit_scaled(temp$diff[i])
temp$choiceR[i] = rbinom(1, 1, temp$thetaR[i])
temp$rater[i] = rater
}
if (exists("df_recovery")) {df_recovery <- rbind(df_recovery, temp)} else {df_recovery <- temp}
}
p1 <- df_recovery %>%
group_by(generationL, generationR, stimulusR) %>%
summarize(x = mean(choiceR)) %>%
mutate(generationR = as.numeric(generationR), generationL = as.numeric(generationL)) %>%
ggplot(aes(generationR, x)) +
geom_point() + geom_smooth(aes(generationR, x)) +
facet_wrap(.~ generationL) + theme_bw() + theme(legend.position = "none")
p2 <- df_recovery %>%
group_by(generationL, generationR, stimulusR, rater) %>%
summarize(x = mean(choiceR)) %>%
mutate(generationR = as.numeric(generationR), generationL = as.numeric(generationL)) %>%
ggplot(aes(generationR, x, group = rater, color = rater)) +
geom_point() + geom_smooth(aes(generationR, x), method = lm, se = F) +
facet_wrap(.~ generationL) + theme_bw() + theme(legend.position = "none")
p3 <- df_recovery %>%
group_by(generationL, generationR, stimulusR, chainR) %>%
summarize(x = mean(choiceR)) %>%
mutate(generationR = as.numeric(generationR), generationL = as.numeric(generationL)) %>%
ggplot(aes(generationR, x, group = chainR, color = chainR)) +
geom_point() + geom_smooth(aes(generationR, x), method = lm, se = F) +
facet_wrap(.~ generationL) + theme_bw() + theme(legend.position = "none")
p1/p2/p3
write_csv(df_recovery, here("data", "exp2_simulated_data.csv"))
d1_sim <- list(
N_choices = nrow(df_recovery),
N_items = items,
N_chains = chains,
N_raters = raters,
y = as.numeric(df_recovery$choiceR),
item1 = as.numeric(df_recovery$stimulusR),
item2 = as.numeric(df_recovery$stimulusL),
rater = as.numeric(df_recovery$rater),
generation = d_items$generation,
chain = d_items$chain
)
file <- file.path(here("scripts", "Exp2_ContestModel.stan"))
mod <- cmdstan_model(file, cpp_options = list(stan_threads = TRUE), pedantic = TRUE)
# The following command calls Stan with specific options.
samples <- mod$sample(
data = d1_sim,
seed = 123,
chains = 2,
parallel_chains = 2,
threads_per_chain = 2,
iter_warmup = 2000,
iter_sampling = 2000,
refresh = 50,
max_treedepth = 20,
adapt_delta = 0.99,
)
samples$save_object(file = here("models", "Exp2_simulated.RDS"))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment