Created
May 6, 2022 12:47
-
-
Save fusaroli/6bee3980375c2d972b4ce965297e853e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(brms) | |
library(patchwork) | |
## Define amount of data | |
items <- 30 | |
chains <- 5 | |
raters <- 30 | |
## Define parameter values | |
GenerationB <- .4 | |
sigma_raters <- .4 | |
sigma_items <- .4 | |
sigma_chains <- .2 | |
# Create dataset with stimuli, with generation and chain ids | |
d_items <- tibble( | |
item = 1:items, | |
item_intercept = rnorm(items, 0, sigma_items), | |
generation = rep(-1:1, 10), | |
chain = rep(seq(chains), each = items/chains), | |
chain_slope = NA | |
) | |
chain_slope = rnorm(chains, 0, sigma_chains) | |
for (i in seq(items)) { | |
d_items$chain_slope[i] <- chain_slope[d_items$chain[i]] | |
} | |
# Create dataset with raters | |
d_raters <- tibble( | |
ID = 1:raters, | |
rater_slope = rnorm(raters, 0, sigma_raters) | |
) | |
## Now create all possible combinations between the stimuli | |
combinations <- t(combn(1:items, 2)) | |
df_recovery <- NULL | |
for (rater in seq(raters)) { | |
print(rater) | |
temp <- tibble( | |
stimulusR = combinations[,1], | |
stimulusL = combinations[,2], | |
chainR = NA, | |
chainL = NA, | |
generationR = NA, | |
generationL = NA, | |
intR = NA, | |
intL = NA | |
) | |
for (i in seq(nrow(combinations))) { | |
temp$chainR[i] <- d_items$chain[temp$stimulusR[i]] | |
temp$chainL[i] <- d_items$chain[temp$stimulusL[i]] | |
temp$generationR[i] <- d_items$generation[temp$stimulusR[i]] | |
temp$generationL[i] <- d_items$generation[temp$stimulusL[i]] | |
temp$intR[i] <- d_items$item_intercept[temp$stimulusR[i]] + | |
(GenerationB + d_items$chain_slope[temp$stimulusR[i]] + | |
d_raters$rater_slope[rater]) * d_items$generation[temp$stimulusR[i]] | |
temp$intL[i] <- d_items$item_intercept[temp$stimulusL[i]] + | |
(GenerationB + d_items$chain_slope[temp$stimulusL[i]] + | |
d_raters$rater_slope[rater]) * d_items$generation[temp$stimulusL[i]] | |
temp$diff[i] = temp$intR[i] - temp$intL[i] | |
temp$thetaR[i] = inv_logit_scaled(temp$diff[i]) | |
temp$choiceR[i] = rbinom(1, 1, temp$thetaR[i]) | |
temp$rater[i] = rater | |
} | |
if (exists("df_recovery")) {df_recovery <- rbind(df_recovery, temp)} else {df_recovery <- temp} | |
} | |
p1 <- df_recovery %>% | |
group_by(generationL, generationR, stimulusR) %>% | |
summarize(x = mean(choiceR)) %>% | |
mutate(generationR = as.numeric(generationR), generationL = as.numeric(generationL)) %>% | |
ggplot(aes(generationR, x)) + | |
geom_point() + geom_smooth(aes(generationR, x)) + | |
facet_wrap(.~ generationL) + theme_bw() + theme(legend.position = "none") | |
p2 <- df_recovery %>% | |
group_by(generationL, generationR, stimulusR, rater) %>% | |
summarize(x = mean(choiceR)) %>% | |
mutate(generationR = as.numeric(generationR), generationL = as.numeric(generationL)) %>% | |
ggplot(aes(generationR, x, group = rater, color = rater)) + | |
geom_point() + geom_smooth(aes(generationR, x), method = lm, se = F) + | |
facet_wrap(.~ generationL) + theme_bw() + theme(legend.position = "none") | |
p3 <- df_recovery %>% | |
group_by(generationL, generationR, stimulusR, chainR) %>% | |
summarize(x = mean(choiceR)) %>% | |
mutate(generationR = as.numeric(generationR), generationL = as.numeric(generationL)) %>% | |
ggplot(aes(generationR, x, group = chainR, color = chainR)) + | |
geom_point() + geom_smooth(aes(generationR, x), method = lm, se = F) + | |
facet_wrap(.~ generationL) + theme_bw() + theme(legend.position = "none") | |
p1/p2/p3 | |
write_csv(df_recovery, here("data", "exp2_simulated_data.csv")) | |
d1_sim <- list( | |
N_choices = nrow(df_recovery), | |
N_items = items, | |
N_chains = chains, | |
N_raters = raters, | |
y = as.numeric(df_recovery$choiceR), | |
item1 = as.numeric(df_recovery$stimulusR), | |
item2 = as.numeric(df_recovery$stimulusL), | |
rater = as.numeric(df_recovery$rater), | |
generation = d_items$generation, | |
chain = d_items$chain | |
) | |
file <- file.path(here("scripts", "Exp2_ContestModel.stan")) | |
mod <- cmdstan_model(file, cpp_options = list(stan_threads = TRUE), pedantic = TRUE) | |
# The following command calls Stan with specific options. | |
samples <- mod$sample( | |
data = d1_sim, | |
seed = 123, | |
chains = 2, | |
parallel_chains = 2, | |
threads_per_chain = 2, | |
iter_warmup = 2000, | |
iter_sampling = 2000, | |
refresh = 50, | |
max_treedepth = 20, | |
adapt_delta = 0.99, | |
) | |
samples$save_object(file = here("models", "Exp2_simulated.RDS")) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment