Last active
May 31, 2019 04:06
-
-
Save fvisin/5a10066258e43cf6acfa0a474fcdb59f to your computer and use it in GitHub Desktop.
Running stats
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class RunningStats: | |
"""Computes running mean and standard deviation | |
Adapted from: | |
* | |
<http://stackoverflow.com/questions/1174984/how-to-efficiently-\ | |
calculate-a-running-standard-deviation> | |
* <http://mathcentral.uregina.ca/QQ/database/QQ.09.02/carlos1.html> | |
""" | |
def __init__(self): | |
self.n = 0. | |
def clear(self): | |
self.n = 0. | |
def push(self, x, per_dim=True): | |
x = numpy.array(x).copy().astype('float16') | |
# process input | |
if per_dim: | |
self.update_params(x) | |
else: | |
for el in x.flatten(): | |
self.update_params(el) | |
def update_params(self, x): | |
self.n += 1 | |
if self.n == 1: | |
self.m = x | |
self.s = 0. | |
else: | |
prev_m = self.m.copy() | |
self.m += (x - self.m) / self.n | |
self.s += (x - prev_m) * (x - self.m) | |
def mean(self): | |
return self.m if self.n else 0.0 | |
def variance(self): | |
return self.s / (self.n) if self.n else 0.0 | |
def std(self): | |
return numpy.sqrt(self.variance()) | |
def test_running_stats(): | |
from numpy.testing import assert_almost_equal as almost_equal | |
from numpy.random import randint | |
arr = numpy.random.randn((30*8*12)).reshape((30, 8, 12)) | |
varsize_arr = [] | |
for el in arr: | |
s = el.shape | |
varsize_arr.append(el[:randint(s[0]-2)+2, :randint(s[1]-2)+2]) | |
# test per dimension statistics | |
perdim_runner = RunningStats() | |
for i, el in enumerate(arr, 1): | |
perdim_runner.push(el) | |
if i == 1: | |
# arr[:i] has no axis 0 | |
continue | |
almost_equal(arr[:i].mean(axis=0), perdim_runner.mean()) | |
almost_equal(arr[:i].std(axis=0), perdim_runner.std()) | |
# test single number statistics | |
runner = RunningStats() | |
for i, el in enumerate(varsize_arr, 1): | |
runner.push(el, False) | |
cum_arr = [] | |
for im in varsize_arr[:i]: | |
cum_arr = numpy.concatenate([im.flatten(), cum_arr]) | |
almost_equal(numpy.array(cum_arr).mean(), runner.mean()) | |
almost_equal(numpy.array(cum_arr).std(), runner.std()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment