Created
July 17, 2024 14:49
-
-
Save fxmarty/1aff830cdd57aa650412f34bd4076b3b to your computer and use it in GitHub Desktop.
profile quanto
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
from optimum.quanto import Calibration, freeze, qint4, qint8, quantize, qfloat8, qfloat8_e4m3fn | |
from torch.profiler import ProfilerActivity, profile | |
M_SHAPE = 4096 | |
class MyModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.lin1 = nn.Linear(M_SHAPE, 4096, bias=False) | |
def forward(self, x): | |
relu_inp = self.lin1(x) | |
return relu_inp | |
def keyword_to_itype(k): | |
return {"none": None, "int4": qint4, "int8": qint8, "float8": qfloat8, "float8_e4m3fn": qfloat8_e4m3fn}[k] | |
model = MyModel().to(torch.float16) | |
model = model.eval() | |
device = "cuda" | |
seed = 42 | |
weights = "float8_e4m3fn" | |
activations = "none" | |
torch.manual_seed(seed) | |
device = torch.device("cuda") | |
model = model.to(device) | |
original_weight = model.lin1.weight.data.clone() | |
print("Float model") | |
weights = keyword_to_itype(weights) | |
activations = keyword_to_itype(activations) | |
print("------ QUANTIZING") | |
quantize(model, weights=weights, activations=activations) | |
print("------ FREEZING") | |
freeze(model) | |
print(f"Quantized model (w: {weights}, a: {activations})") | |
print("--------- INFERENCE") | |
inp = torch.rand(1, M_SHAPE, dtype=torch.float16).to(device) | |
def run_linear_marlin(inp, weight): | |
workspace = weight._workspace | |
scale = weight._scale | |
input_flat = inp.view(-1, inp.shape[-1]) | |
out = torch.ops.quanto_ext.fp8_marlin( | |
input_flat, | |
b_q_weight=weight._data, | |
b_scales=scale.to(input_flat.dtype), | |
workspace=weight._workspace, | |
num_bits=8, | |
size_m=input_flat.shape[0], | |
size_n=scale.shape[1], | |
size_k=input_flat.shape[1], | |
) | |
return out.reshape(inp.shape[:-1] + (scale.shape[1],)) | |
def run_native_linear(inp, weight): | |
return torch.nn.functional.linear(inp, weight) | |
with torch.no_grad(): | |
with profile( | |
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], | |
record_shapes=True, | |
profile_memory=True, | |
with_stack=True, | |
) as prof: | |
for _ in range(10): | |
res = model(inp) | |
res = run_linear_marlin(inp, model.lin1.weight) | |
res = run_native_linear(inp, original_weight) | |
prof.export_chrome_trace("trace.json") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment