Skip to content

Instantly share code, notes, and snippets.

@fxmarty
Created July 17, 2024 14:53
Show Gist options
  • Save fxmarty/e449c55e4a1dbf9b1657f395aa542eb4 to your computer and use it in GitHub Desktop.
Save fxmarty/e449c55e4a1dbf9b1657f395aa542eb4 to your computer and use it in GitHub Desktop.
benchmark quanto
import torch
import torch.nn as nn
import time
import numpy as np
from optimum.quanto import Calibration, freeze, qint4, qint8, quantize, qfloat8, qfloat8_e4m3fn
from torch.profiler import ProfilerActivity, profile
M_SHAPES = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
N_SHAPE = 4096
K_SHAPE = 4096
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.lin1 = nn.Linear(K_SHAPE, N_SHAPE, bias=False)
def forward(self, inp):
return self.lin1(inp)
def keyword_to_itype(k):
return {"none": None, "int4": qint4, "int8": qint8, "float8": qfloat8, "float8_e4m3fn": qfloat8_e4m3fn}[k]
model = MyModel().to(torch.float16)
model = model.eval()
device = "cuda"
seed = 42
weights = "float8_e4m3fn"
activations = "none"
batch_size = 10
samples = 10
torch.manual_seed(seed)
device = torch.device("cuda")
model = model.to(device)
original_weight = model.lin1.weight.data.clone()
print("Float model")
weights = keyword_to_itype(weights)
activations = keyword_to_itype(activations)
print("------ QUANTIZING")
quantize(model, weights=weights, activations=activations)
print("------ FREEZING")
freeze(model)
print(f"Quantized model (w: {weights}, a: {activations})")
print("--------- INFERENCE")
def run_linear_marlin(inp, weight):
workspace = weight._workspace
scale = weight._scale
# assert inp.ndim == 2
inp = inp.view(-1, inp.shape[-1])
out = torch.ops.quanto_ext.fp8_marlin(
inp,
b_q_weight=weight._data,
b_scales=scale,
workspace=weight._workspace,
num_bits=8,
size_m=inp.shape[0],
size_n=scale.shape[1],
size_k=inp.shape[1],
)
return out.reshape(inp.shape[:-1] + (scale.shape[1],))
def run_native_linear(inp, weight):
return torch.nn.functional.linear(inp, weight)
n_runs = 50
tps_quanto_model = []
tps_ops_call = []
tps_native = []
def benchmark_func(func, kwargs):
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
torch.cuda.synchronize()
start_event.record()
res = func(**kwargs)
end_event.record()
torch.cuda.synchronize(device)
return start_event.elapsed_time(end_event)
n = N_SHAPE
k = K_SHAPE
result = "m,n_out,k_in,mean_quanto_model_ms,mean_ops_call_ms,mean_native_ms\n"
with torch.no_grad():
for m in M_SHAPES:
inp = torch.rand(m, K_SHAPE, dtype=torch.float16).to(device)
res = model(inp)
res = run_linear_marlin(inp, model.lin1.weight)
res = run_native_linear(inp, original_weight)
for _ in range(n_runs):
latency_ms = benchmark_func(model, kwargs={"inp": inp})
tps_quanto_model.append(latency_ms)
latency_ms = benchmark_func(run_linear_marlin, kwargs={"inp": inp, "weight": model.lin1.weight})
tps_ops_call.append(latency_ms)
latency_ms = benchmark_func(run_native_linear, kwargs={"inp": inp, "weight": original_weight})
tps_native.append(latency_ms)
mean_quanto_model = np.mean(tps_quanto_model)
mean_ops_call = np.mean(tps_ops_call)
mean_native = np.mean(tps_native)
result += ",".join([
str(m),
str(n),
str(k),
f"{mean_quanto_model:.4f}",
f"{mean_ops_call:.4f}",
f"{mean_native:.4f}",
]) + "\n"
print(result)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment