Created
September 27, 2023 12:41
-
-
Save gabriel-fallen/56188cd854292c1d5e939bffaf667d52 to your computer and use it in GitHub Desktop.
Some basic facts about integers
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- Addition | |
theorem add_comm : ∀ (n m : Int), n + m = m + n := by | |
intro n m | |
simp [HAdd.hAdd, Add.add] | |
match n, m with | |
| Int.ofNat m, Int.ofNat n => | |
simp [Int.add] | |
apply Nat.add_comm | |
| Int.ofNat m, Int.negSucc n => | |
simp [Int.add] | |
| Int.negSucc m, Int.ofNat n => | |
simp [Int.add] | |
| Int.negSucc m, Int.negSucc n => | |
simp [Int.add] | |
apply Nat.add_comm | |
@[simp] theorem zero_add : ∀ (n : Int), 0 + n = n := by | |
intro n | |
cases n with | |
| ofNat m => | |
simp [HAdd.hAdd, Add.add, Int.add] | |
simp | |
| negSucc m => | |
simp [HAdd.hAdd, Add.add, Int.add, Int.subNatNat] | |
@[simp] theorem add_zero (n : Int) : n + 0 = n := by | |
rw [add_comm n 0, zero_add n] | |
-- Multiplication | |
@[simp] theorem mul_zero (n : Int) : n * 0 = 0 := by | |
simp [HMul.hMul, Mul.mul, OfNat.ofNat, Int.mul] | |
cases n <;> simp | |
theorem mul_comm : ∀ (n m : Int), n * m = m * n := by | |
intro m n | |
simp [HMul.hMul, Mul.mul] | |
match m, n with | |
| Int.ofNat m, Int.ofNat n => | |
simp [Int.mul] | |
apply Nat.mul_comm | |
| Int.ofNat m, Int.negSucc n => | |
simp [Int.mul] | |
rw [Nat.mul_comm] | |
| Int.negSucc m, Int.ofNat n => | |
simp [Int.mul] | |
rw [Nat.mul_comm] | |
| Int.negSucc m, Int.negSucc n => | |
simp [Int.mul] | |
apply Nat.mul_comm | |
@[simp] theorem zero_mul : ∀ (n : Int), 0 * n = 0 := by | |
intro n | |
rw [mul_comm 0 n] | |
apply mul_zero | |
@[simp] theorem mul_one : ∀ (n : Int), n * 1 = n := by | |
intro n | |
simp [HMul.hMul, Mul.mul, OfNat.ofNat, Int.mul] | |
cases n <;> simp | |
simp [Int.negOfNat] | |
@[simp] theorem one_mul (n : Int) : 1 * n = n := | |
mul_comm n 1 ▸ mul_one n |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment