Last active
December 17, 2015 23:39
-
-
Save gadamc/5690900 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Alpine Data Labs 30.2% (60) 34.2% (68) 35.7% (71) 1.94 199 | |
Bright.com 25.4% (54) 48.4% (103) 26.3% (56) 1.99 213 | |
Cloudant 93.3% (1349) 3.5% (50) 3.3% (47) 2.90 1446 | |
Cloudera 30.1% (241) 47.2% (378) 22.7% (182) 2.07 801 | |
Cloudmeter 87.2% (444) 7.9% (40) 5.3% (27) 2.83 509 | |
CloudPhysics 75.6% (341) 14.9% (67) 10.4% (47) 2.67 451 | |
Concurrent 16.2% (22) 42.6% (58) 41.2% (56) 1.75 136 | |
Continuum Analytics 59.6% (133) 17.0% (38) 23.3% (52) 2.36 223 | |
Datameer 57.5% (226) 21.1% (83) 21.4% (84) 2.36 393 | |
DataSift 12.5% (12) 47.9% (46) 39.6% (38) 1.73 96 | |
DataStax 16.3% (8) 36.7% (18) 46.9% (23) 1.69 49 | |
Enigma 22.0% (28) 38.6% (49) 39.4% (50) 1.83 127 | |
FusionOps 53.7% (79) 23.1% (34) 23.1% (34) 2.31 147 | |
Garantia Data 38.7% (29) 33.3% (25) 28.0% (21) 2.11 75 | |
Gravity 48.3% (73) 23.8% (36) 27.8% (42) 2.21 151 | |
Hortonworks 37.0% (159) 31.2% (134) 31.9% (137) 2.05 430 | |
Icimo 28.2% (22) 30.8% (24) 41.0% (32) 1.87 78 | |
LucidWorks 85.0% (756) 7.2% (64) 7.8% (69) 2.77 889 | |
MapR Technologies 62.3% (327) 16.6% (87) 21.1% (111) 2.41 525 | |
MemSQL 12.2% (15) 43.1% (53) 44.7% (55) 1.67 123 | |
Metamarkets 67.6% (169) 17.6% (44) 14.8% (37) 2.53 250 | |
Mortar Data 9.3% (7) 41.3% (31) 49.3% (37) 1.60 75 | |
NGDATA 44.1% (45) 28.4% (29) 27.5% (28) 2.17 102 | |
ParStream 89.6% (786) 7.5% (66) 2.9% (25) 2.87 877 | |
Pivotal 31.3% (40) 31.3% (40) 37.5% (48) 1.94 128 | |
Platfora 73.4% (427) 14.3% (83) 12.5% (73) 2.61 582 | |
RainStor 10.1% (9) 29.2% (26) 60.7% (54) 1.49 89 | |
Rocket Fuel 36.2% (76) 38.6% (81) 25.2% (53) 2.11 210 | |
ScaleArc 87.7% (724) 8.4% (69) 4.0% (33) 2.84 826 | |
SiSense 93.2% (1151) 4.4% (54) 2.4% (30) 2.91 1235 | |
Skyhigh Networks 53.2% (82) 28.6% (44) 18.2% (28) 2.35 154 | |
Skytree 81.0% (451) 8.1% (45) 11.0% (61) 2.70 557 | |
SnapLogic 19.0% (24) 38.1% (48) 42.9% (54) 1.76 126 | |
SolidFire 54.4% (81) 16.8% (25) 28.9% (43) 2.26 149 | |
Sqrrl 70.7% (94) 12.8% (17) 16.5% (22) 2.54 133 | |
Statwing 9.6% (5) 50.0% (26) 40.4% (21) 1.69 52 | |
SumAll 94.6% (865) 2.2% (20) 3.2% (29) 2.91 914 | |
VoltDB 27.1% (49) 40.3% (73) 32.6% (59) 1.94 181 | |
Vyopta 4.2% (3) 45.1% (32) 50.7% (36) 1.54 71 | |
WibiData 51.8% (147) 26.4% (75) 21.8% (62) 2.30 284 | |
Xplenty 87.1% (615) 8.6% (61) 4.2% (30) 2.83 706 | |
Zettaset 31.3% (47) 32.7% (49) 36.0% (54) 1.95 150 | |
Zoomdata 25.6% (54) 29.9% (63) 44.5% (94) 1.81 211 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
> python rank.py 2 | |
Rank, Company Num Votes Num Votes*AveRank Bullshit Factor | |
1. Cloudant 1446.0 4193.4 13.9072164948 | |
2. SiSense 1235.0 3593.85 13.7023809524 | |
3. SumAll 914.0 2659.74 17.6530612245 | |
4. ParStream 877.0 2516.99 8.63736263736 | |
5. LucidWorks 889.0 2462.53 5.68421052632 | |
6. ScaleArc 826.0 2345.84 7.09803921569 | |
7. Xplenty 706.0 1997.98 6.75824175824 | |
8. Cloudera 801.0 1658.07 0.430357142857 | |
9. Platfora 582.0 1519.02 2.73717948718 | |
10. Skytree 557.0 1503.9 4.25471698113 | |
11. Cloudmeter 509.0 1440.47 6.62686567164 | |
12. MapR Technologies 525.0 1265.25 1.65151515152 | |
13. CloudPhysics 451.0 1204.17 2.99122807018 | |
14. Datameer 393.0 927.48 1.35329341317 | |
15. Hortonworks 430.0 881.5 0.586715867159 | |
16. WibiData 284.0 653.2 1.07299270073 | |
17. Metamarkets 250.0 632.5 2.08641975309 | |
18. Continuum Analytics 223.0 526.28 1.47777777778 | |
19. Rocket Fuel 210.0 443.1 0.567164179104 | |
20. Bright.com 213.0 423.87 0.339622641509 | |
21. Alpine Data Labs 199.0 386.06 0.431654676259 | |
22. Zoomdata 211.0 381.91 0.343949044586 | |
23. Skyhigh Networks 154.0 361.9 1.13888888889 | |
24. VoltDB 181.0 351.14 0.371212121212 | |
25. FusionOps 147.0 339.57 1.16176470588 | |
26. Sqrrl 133.0 337.82 2.41025641026 | |
27. SolidFire 149.0 336.74 1.19117647059 | |
28. Gravity 151.0 333.71 0.935897435897 | |
29. Zettaset 150.0 292.5 0.456310679612 | |
30. Pivotal 128.0 248.32 0.454545454545 | |
31. Concurrent 136.0 238.0 0.19298245614 | |
32. Enigma 127.0 232.41 0.282828282828 | |
33. SnapLogic 126.0 221.76 0.235294117647 | |
34. NGDATA 102.0 221.34 0.789473684211 | |
35. MemSQL 123.0 205.41 0.138888888889 | |
36. DataSift 96.0 166.08 0.142857142857 | |
37. Garantia Data 75.0 158.25 0.630434782609 | |
38. Icimo 78.0 145.86 0.392857142857 | |
39. RainStor 89.0 132.61 0.1125 | |
40. Mortar Data 75.0 120.0 0.102941176471 | |
41. Vyopta 71.0 109.34 0.0441176470588 | |
42. Statwing 52.0 87.88 0.106382978723 | |
43. DataStax 49.0 82.81 0.19512195122 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import re | |
import sys | |
dl = [] | |
def getval(sline, indexFromEnd): | |
return float(sline[len(sline)-indexFromEnd].strip('()')) | |
print "Rank, Company Num Votes Num Votes*AveRank Bullshit Factor" | |
rankIndex = 2 | |
try: | |
rankIndex = int(sys.argv[1]) | |
except IndexError: pass | |
with open('data.txt') as f: | |
for aline in f: | |
company = re.split('[0-9]', aline)[0].strip() | |
sline = re.split(' +', aline.strip()) | |
dl.append((company, getval(sline,1), getval(sline,2) * getval(sline,1), getval(sline,7)/( getval(sline,3) + getval(sline,5)) ) ) | |
dlsort = sorted(dl, key=lambda x: x[rankIndex], reverse=True) | |
col_width = max(len(str(word)) for row in dlsort for word in row) + 2 # padding | |
count = 0 | |
for dlsitem in dlsort: | |
count += 1 | |
print '%d.' % (count), "".join(str(word).ljust(col_width) for word in dlsitem) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment