Created
June 23, 2015 23:36
-
-
Save gallais/06107cca68c9c7ea1c7f to your computer and use it in GitHub Desktop.
Associativity of (a weird) plus
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data ℕ : Set where | |
zero : ℕ | |
suc : ℕ → ℕ | |
infix 40 _+_ | |
_+_ : ℕ → ℕ → ℕ | |
zero + zero = zero | |
(suc a) + zero = suc a | |
zero + (suc b) = suc b | |
(suc a) + (suc b) = suc (suc (a + b)) | |
infix 4 _≡_ | |
data _≡_ {a} {A : Set a} (x : A) : A → Set a where | |
refl : x ≡ x --reflexive property | |
{-# BUILTIN EQUALITY _≡_ #-} | |
{-# BUILTIN REFL refl #-} | |
cong : ∀ {A B : Set} {x y : A} (f : A → B) → x ≡ y → f x ≡ f y | |
cong f refl = refl | |
2+ : ∀ (a : ℕ) → ℕ | |
2+ a = suc (suc a) | |
a+0≡a : (a : ℕ) → a + zero ≡ a | |
a+0≡a zero = refl | |
a+0≡a (suc a) = refl | |
0+b≡b : (b : ℕ) → zero + b ≡ b | |
0+b≡b zero = refl | |
0+b≡b (suc x) = refl | |
mutual | |
sa+b≡s⟨a+b⟩ : (a b : ℕ) → suc a + b ≡ suc (a + b) | |
sa+b≡s⟨a+b⟩ a zero rewrite a+0≡a a = refl | |
sa+b≡s⟨a+b⟩ a (suc b) rewrite a+sb≡s⟨a+b⟩ a b = refl | |
a+sb≡s⟨a+b⟩ : (a b : ℕ) → a + suc b ≡ suc (a + b) | |
a+sb≡s⟨a+b⟩ zero b rewrite 0+b≡b b = refl | |
a+sb≡s⟨a+b⟩ (suc a) b rewrite sa+b≡s⟨a+b⟩ a b = refl | |
+-assoc₁ : ∀ (a b c : ℕ) → a + (b + c) ≡ (a + b) + c | |
+-assoc₁ a b zero rewrite a+0≡a b | a+0≡a (a + b) = refl | |
+-assoc₁ a b (suc c) | |
rewrite a+sb≡s⟨a+b⟩ b c | |
| a+sb≡s⟨a+b⟩ (a + b) c | |
| a+sb≡s⟨a+b⟩ a (b + c) = cong suc (+-assoc₁ a b c) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment