Last active
March 28, 2016 22:28
-
-
Save gallais/358ba798323868a7c4e0 to your computer and use it in GitHub Desktop.
Quick an Dirty transformation of the STO instance for String
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Level | |
import Data.AVL.Sets | |
open import Data.String as String | |
open import Relation.Binary using (module StrictTotalOrder) | |
open import Data.Product | |
open import Function | |
open import Relation.Binary | |
record RawIso {ℓ : Level} (A B : Set ℓ) : Set ℓ where | |
field | |
push : A → B | |
pull : B → A | |
open RawIso public | |
RawIso-IsEquivalence : | |
{ℓ ℓ′ : Level} {A : Set ℓ} {R R′ : Rel A ℓ′} → | |
(iso : {a b : A} → RawIso (R a b) (R′ a b)) → IsEquivalence R → IsEquivalence R′ | |
RawIso-IsEquivalence iso isEq = let open IsEquivalence isEq in | |
record { refl = push iso refl | |
; sym = push iso ∘ sym ∘ pull iso | |
; trans = λ p q → push iso $ trans (pull iso p) (pull iso q) } | |
RawIso-Trichotomous : | |
{ℓ ℓ′ ℓ′′ : Level} {A : Set ℓ} {R R′ : Rel A ℓ′} {O : Rel A ℓ′′} → | |
(iso : {a b : A} → RawIso (R a b) (R′ a b)) → | |
Trichotomous R O → Trichotomous R′ O | |
RawIso-Trichotomous iso tri x y with tri x y | |
... | tri< a ¬b ¬c = tri< a (¬b ∘ pull iso) ¬c | |
... | tri≈ ¬a b ¬c = tri≈ ¬a (push iso b) ¬c | |
... | tri> ¬a ¬b c = tri> ¬a (¬b ∘ pull iso) c | |
RawIso-Respects₂ : | |
{ℓ ℓ′ ℓ′′ : Level} {A : Set ℓ} {R R′ : Rel A ℓ′} {O : Rel A ℓ′′} → | |
(iso : {a b : A} → RawIso (R a b) (R′ a b)) → | |
O Respects₂ R → O Respects₂ R′ | |
RawIso-Respects₂ iso (b , f) = b ∘ pull iso | |
, f ∘ pull iso | |
RawIso-IsStrictTotalOrder : | |
{ℓ ℓ′ ℓ′′ : Level} {A : Set ℓ} {R R′ : Rel A ℓ′} {O : Rel A ℓ′′} → | |
(iso : {a b : A} → RawIso (R a b) (R′ a b)) → | |
IsStrictTotalOrder R O → IsStrictTotalOrder R′ O | |
RawIso-IsStrictTotalOrder {A = A} iso isSTO = let open IsStrictTotalOrder isSTO in | |
record { isEquivalence = RawIso-IsEquivalence iso isEquivalence | |
; trans = trans | |
; compare = RawIso-Trichotomous iso compare | |
; <-resp-≈ = RawIso-Respects₂ iso <-resp-≈ } | |
import Data.Nat.Properties as NatProp | |
open import Data.List | |
open import Data.Char | |
open import Relation.Binary.PropositionalEquality | |
open ≡-Reasoning | |
import Relation.Binary.List.Pointwise as Ptwise | |
toNat-injective : {c d : Char} → toNat c ≡ toNat d → c ≡ d | |
toNat-injective {c} pr with toNat c | |
toNat-injective refl | ._ = trustMe -- probably unsafe | |
where open import Relation.Binary.PropositionalEquality.TrustMe | |
rawIso : {a b : String} → RawIso ((Ptwise.Rel (_≡_ on toNat) on toList) a b) (a ≡ b) | |
rawIso {a} {b} = record { push = `push ; pull = `pull } where | |
`push : {a b : String} → (Ptwise.Rel (_≡_ on toNat) on toList) a b → a ≡ b | |
`push {a} {b} pr = | |
begin | |
a ≡⟨ sym (fromList∘toList a) ⟩ | |
fromList (toList a) ≡⟨ cong fromList (aux pr) ⟩ | |
fromList (toList b) ≡⟨ fromList∘toList b ⟩ | |
b | |
∎ where | |
aux : {xs ys : List Char} → Ptwise.Rel (_≡_ on toNat) xs ys → xs ≡ ys | |
aux = Ptwise.rec (λ {xs} {ys} _ → xs ≡ ys) (cong₂ _∷_ ∘ toNat-injective) refl | |
`pull : {a b : String} → a ≡ b → (Ptwise.Rel (_≡_ on toNat) on toList) a b | |
`pull refl = Ptwise.refl refl | |
stringSTO : IsStrictTotalOrder (StrictTotalOrder._≈_ String.strictTotalOrder) (StrictTotalOrder._<_ String.strictTotalOrder) | |
stringSTO = StrictTotalOrder.isStrictTotalOrder String.strictTotalOrder | |
open Data.AVL.Sets (RawIso-IsStrictTotalOrder rawIso stringSTO) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment