Created
June 15, 2015 14:34
-
-
Save gallais/727f340bab62a9824c1f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module SemigroupPuzzles where | |
open import Algebra | |
open import Function | |
module _ {c ℓ} (S : Semigroup c ℓ) | |
(open Semigroup S) | |
(assumption : (e f : Carrier) → e ∙ f ∙ e ≈ e) | |
where | |
open import Relation.Binary.EqReasoning setoid | |
puzzle₁ : (x y z : Carrier) → x ∙ y ∙ z ≈ x ∙ z | |
puzzle₁ x y z = | |
begin | |
x ∙ y ∙ z ≈⟨ ∙-cong refl (sym $ assumption z x) ⟩ | |
x ∙ y ∙ (z ∙ x ∙ z) ≈⟨ lemma ⟩ | |
(x ∙ (y ∙ z) ∙ x) ∙ z ≈⟨ ∙-cong (assumption x (y ∙ z)) refl ⟩ | |
x ∙ z | |
∎ where | |
lemma : x ∙ y ∙ (z ∙ x ∙ z) ≈ (x ∙ (y ∙ z) ∙ x) ∙ z | |
lemma = | |
begin | |
x ∙ y ∙ (z ∙ x ∙ z) ≈⟨ assoc x y (z ∙ x ∙ z) ⟩ | |
x ∙ (y ∙ (z ∙ x ∙ z)) ≈⟨ ∙-cong refl (∙-cong refl (assoc z x z)) ⟩ | |
x ∙ (y ∙ (z ∙ (x ∙ z))) ≈⟨ ∙-cong refl (sym $ assoc y z (x ∙ z)) ⟩ | |
x ∙ (y ∙ z ∙ (x ∙ z)) ≈⟨ sym $ assoc x (y ∙ z) (x ∙ z) ⟩ | |
x ∙ (y ∙ z) ∙ (x ∙ z) ≈⟨ sym $ assoc (x ∙ (y ∙ z)) x z ⟩ | |
(x ∙ (y ∙ z) ∙ x) ∙ z | |
∎ | |
puzzle₂ : (x : Carrier) → x ∙ x ≈ x | |
puzzle₂ x = | |
begin | |
x ∙ x ≈⟨ ∙-cong refl (sym $ assumption x x) ⟩ | |
x ∙ (x ∙ x ∙ x) ≈⟨ sym $ assoc x (x ∙ x) x ⟩ | |
x ∙ (x ∙ x) ∙ x ≈⟨ assumption x (x ∙ x) ⟩ | |
x | |
∎ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment