Last active
February 25, 2017 17:44
-
-
Save gallais/9f017c51100c63cdc199fe60dc902b82 to your computer and use it in GitHub Desktop.
eq-dec => UIP proof taken from https://sympa.inria.fr/sympa/arc/coq-club/2016-09/msg00064.html
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --without-K #-} | |
module UIP where | |
open import Level | |
open import Relation.Binary.PropositionalEquality | |
record Canonical {ℓ} {ℓ′} (A : Set ℓ) (B : Set ℓ′) : Set (ℓ ⊔ ℓ′) where | |
field canonical : A → B | |
constraint : ∀ a a′ → canonical a ≡ canonical a′ | |
open Canonical | |
open import Data.Empty | |
open import Relation.Nullary | |
open import Relation.Binary | |
module _ {ℓ} {A : Set ℓ} where | |
eqdec-canonical : Decidable {A = A} _≡_ → | |
∀ {x y : A} → Canonical (x ≡ y) (x ≡ y) | |
eqdec-canonical dec {x} {y} = record | |
{ canonical = canon | |
; constraint = equal } where | |
canon : x ≡ y → x ≡ y | |
canon eq with dec x y | |
... | yes p = p | |
... | no ¬p = ⊥-elim (¬p eq) | |
equal : ∀ a a′ → canon a ≡ canon a′ | |
equal a a′ with dec x y | |
... | yes p = refl | |
... | no ¬p = ⊥-elim (¬p a) | |
quasi-UIP : ∀ {x y : A} (e : x ≡ y) → trans (sym e) e ≡ refl | |
quasi-UIP refl = refl | |
module _ (c : ∀ {x y : A} → Canonical (x ≡ y) (x ≡ y)) where | |
eq-expand : ∀ {x y : A} (e : x ≡ y) → | |
trans (sym (canonical c refl)) (canonical c e) ≡ e | |
eq-expand e rewrite e = quasi-UIP (canonical c refl) | |
UIP : ∀ {x y : A} (e f : x ≡ y) → e ≡ f | |
UIP e f rewrite sym (eq-expand e) | |
| sym (eq-expand f) | |
| constraint c e f = refl | |
eqdec-UIP : Decidable {A = A} _≡_ → | |
∀ {x y : A} (e f : x ≡ y) → e ≡ f | |
eqdec-UIP d = UIP (eqdec-canonical d) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment