Last active
July 28, 2017 14:23
-
-
Save gallais/b2c37799a7be4af0f4872fd3144400ba to your computer and use it in GitHub Desktop.
Nbe Is A Semantics
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module NbeIsASemantics where | |
open import Data.Unit | |
open import Data.Empty | |
open import Data.Product | |
open import Agda.Builtin.List | |
data Ty : Set where | |
α : Ty | |
_⇒_ : Ty → Ty → Ty | |
module _ {I : Set} where | |
infixr 5 _⟶_ | |
infix 8 _⊢_ | |
infixr 7 _∙×_ | |
_⟶_ : (I → Set) → (I → Set) → (I → Set) | |
(S ⟶ T) i = S i → T i | |
[_] : (I → Set) → Set | |
[ T ] = ∀ {i} → T i | |
_⊢_ : (I → I) → (I → Set) → (I → Set) | |
(f ⊢ T) i = T (f i) | |
_∙×_ : (I → Set) → (I → Set) → (I → Set) | |
(S ∙× T) i = S i × T i | |
κ : Set → (I → Set) | |
κ S i = S | |
Model : Set₁ | |
Model = Ty → List Ty → Set | |
data Var : Model where | |
z : {σ : Ty} → [ (σ ∷_) ⊢ Var σ ] | |
s : {σ τ : Ty} → [ Var σ ⟶ (τ ∷_) ⊢ Var σ ] | |
infix 3 _─Env | |
record _─Env (Γ : List Ty) (M : Model) (Δ : List Ty) : Set where | |
constructor pack | |
field lookup : {σ : Ty} → Var σ Γ → M σ Δ | |
open _─Env | |
_<$>_ : {M N : Model} {Γ Δ Θ : List Ty} → ({σ : Ty} → M σ Δ → N σ Θ) → (Γ ─Env) M Δ → (Γ ─Env) N Θ | |
lookup (f <$> ρ) k = f (lookup ρ k) | |
ε : ∀ {M Δ} → ([] ─Env) M Δ | |
lookup ε () | |
infixl 10 _∙_ | |
_∙_ : ∀ {M Γ Δ σ} → (Γ ─Env) M Δ → M σ Δ → (σ ∷ Γ ─Env) M Δ | |
lookup (ρ ∙ v) z = v | |
lookup (ρ ∙ v) (s k) = lookup ρ k | |
refl : ∀ {Γ} → (Γ ─Env) Var Γ | |
lookup refl v = v | |
Thinning : List Ty → List Ty → Set | |
Thinning Γ Δ = (Γ ─Env) Var Δ | |
select : ∀ {Γ Δ Θ M} → Thinning Γ Δ → (Δ ─Env) M Θ → (Γ ─Env) M Θ | |
lookup (select ren ρ) k = lookup ρ (lookup ren k) | |
extend : ∀ {Γ σ} → Thinning Γ (σ ∷ Γ) | |
extend = pack s | |
□ : (List Ty → Set) → (List Ty → Set) | |
(□ T) Γ = [ Thinning Γ ⟶ T ] | |
duplicate : {T : List Ty → Set} → [ □ T ⟶ □ (□ T) ] | |
duplicate t ρ σ = t (select ρ σ) | |
module Syntax {CUT : Ty → Set} where | |
data Chk : Model | |
data Syn : Model | |
data Chk where | |
l : {σ τ : Ty} → [ (σ ∷_) ⊢ Chk τ ⟶ Chk (σ ⇒ τ) ] | |
e : {σ : Ty} → [ Syn σ ⟶ Chk σ ] | |
data Syn where | |
v : {σ : Ty} → [ Var σ ⟶ Syn σ ] | |
c : {σ : Ty} {{p : CUT σ}} → [ Chk σ ⟶ Syn σ ] | |
a : {σ τ : Ty} → [ Syn (σ ⇒ τ) ⟶ Chk σ ⟶ Syn τ ] | |
ren^Chk : {σ : Ty} {Γ Δ : List Ty} → | |
Thinning Γ Δ → Chk σ Γ → Chk σ Δ | |
ren^Syn : {σ : Ty} {Γ Δ : List Ty} → | |
Thinning Γ Δ → Syn σ Γ → Syn σ Δ | |
ren^Chk ρ (l b) = l (ren^Chk (select ρ extend ∙ z) b) | |
ren^Chk ρ (e t) = e (ren^Syn ρ t) | |
ren^Syn ρ (v x) = v (lookup ρ x) | |
ren^Syn ρ (c t) = c (ren^Chk ρ t) | |
ren^Syn ρ (a f t) = a (ren^Syn ρ f) (ren^Chk ρ t) | |
open Syntax | |
NoCut : Ty → Set | |
NoCut α = ⊤ | |
NoCut _ = ⊥ | |
Nf = Syntax.Chk {NoCut} | |
Ne = Syntax.Syn {NoCut} | |
NBE : Model | |
GO! : Model | |
NBE σ = Nf σ ∙× GO! σ | |
GO! α = Ne α | |
GO! (σ ⇒ τ) = □ (NBE σ ⟶ NBE τ) | |
ren^NBE : (σ : Ty) {Γ Δ : List Ty} → | |
Thinning Γ Δ → NBE σ Γ → NBE σ Δ | |
ren^GO! : (σ : Ty) {Γ Δ : List Ty} → | |
Thinning Γ Δ → GO! σ Γ → GO! σ Δ | |
ren^NBE σ ρ (t , T) = ren^Chk ρ t , ren^GO! σ ρ T | |
ren^GO! α ρ T = ren^Syn ρ T | |
ren^GO! (σ ⇒ τ) ρ T = duplicate T ρ | |
reify : (σ : Ty) → [ GO! σ ⟶ Nf σ ] | |
reflect : (σ : Ty) → [ Ne σ ⟶ GO! σ ] | |
reify α T = e T | |
reify (σ ⇒ τ) T = let v = e (v z) , reflect σ (v z) | |
in l (reify τ (proj₂ (T extend v))) | |
reflect α t = t | |
reflect (σ ⇒ τ) t = λ r v → | |
let t⌞v⌟ = a (ren^Syn r t) (proj₁ v) | |
in e t⌞v⌟ , reflect τ t⌞v⌟ | |
Trm = Syntax.Chk {λ _ → ⊤} | |
Elm = Syntax.Syn {λ _ → ⊤} | |
nbe^Trm : {σ : Ty} {Γ Δ : List Ty} → | |
(Γ ─Env) NBE Δ → Trm σ Γ → NBE σ Δ | |
nbe^Elm : {σ : Ty} {Γ Δ : List Ty} → | |
(Γ ─Env) NBE Δ → Elm σ Γ → NBE σ Δ | |
nbe^Trm {ty@(σ ⇒ τ)} {Γ} {Δ} ρ (l b) = | |
let T : GO! ty Δ | |
T = λ r v → nbe^Trm ((ren^NBE _ r <$> ρ) ∙ v) b | |
in reify ty T , T | |
nbe^Trm ρ (e t) = nbe^Elm ρ t | |
nbe^Elm ρ (v x) = lookup ρ x | |
nbe^Elm ρ (c t) = nbe^Trm ρ t | |
nbe^Elm ρ (a f t) = proj₂ (nbe^Elm ρ f) refl (nbe^Trm ρ t) | |
norm : {σ : Ty} → [ Trm σ ⟶ Nf σ ] | |
norm t = proj₁ (nbe^Trm (pack (λ x → e (v x) , reflect _ (v x))) t) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment