Created
February 21, 2017 11:30
-
-
Save gallais/dc3eac9e3ef5f454c46762dfc103de10 to your computer and use it in GitHub Desktop.
Alternative definition of Even
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Even where | |
open import Data.Nat | |
open import Data.Nat.Properties.Simple | |
open import Function | |
open import Relation.Binary.PropositionalEquality | |
open ≡-Reasoning | |
data Even : ℕ → Set where | |
zEven : Even 0 | |
ssEven : {n : ℕ} → Even n → Even (suc (suc n)) | |
record Even′ (n : ℕ) : Set where | |
constructor mkEven′ | |
field factor : ℕ | |
.equality : n ≡ factor * 2 | |
open Even′ | |
Even⇒Even′ : {n : ℕ} → Even n → Even′ n | |
Even⇒Even′ zEven = mkEven′ zero refl | |
Even⇒Even′ (ssEven p) = | |
let (mkEven′ p eq) = Even⇒Even′ p | |
in mkEven′ (suc p) (cong (suc ∘ suc) eq) | |
suc≠zero : {n : ℕ} {A : Set} → .(suc n ≡ zero) → A | |
suc≠zero () | |
Even′⇒Even : {n : ℕ} → Even′ n → Even n | |
Even′⇒Even {zero} p = zEven | |
Even′⇒Even {suc (suc n)} (mkEven′ (suc p) eq) = | |
ssEven (Even′⇒Even (mkEven′ p (cong (pred ∘ pred) eq))) | |
Even′⇒Even {suc zero} (mkEven′ zero eq) = suc≠zero eq | |
Even′⇒Even {suc zero} (mkEven′ (suc p) eq) = suc≠zero (sym (cong pred eq)) | |
Even′⇒Even {suc (suc n)} (mkEven′ zero eq) = suc≠zero eq | |
plusEven′ : ∀ n m → Even′ n → Even′ m → Even′ (n + m) | |
plusEven′ n m (mkEven′ p Hp) (mkEven′ q Hq) = mkEven′ (p + q) eq where | |
.eq : n + m ≡ (p + q) * 2 | |
eq = begin | |
n + m ≡⟨ cong₂ _+_ Hp Hq ⟩ | |
p * 2 + q * 2 ≡⟨ sym (distribʳ-*-+ 2 p q) ⟩ | |
(p + q) * 2 | |
∎ | |
plusEven : ∀ n m → Even n → Even m → Even (n + m) | |
plusEven n m en em = Even′⇒Even (plusEven′ n m (Even⇒Even′ en) (Even⇒Even′ em)) | |
timesEven′Right : ∀ n m → Even′ m → Even′ (n * m) | |
timesEven′Right n m (mkEven′ p Hp) = mkEven′ (n * p) eq where | |
.eq : n * m ≡ (n * p) * 2 | |
eq = begin | |
n * m ≡⟨ cong (n *_) Hp ⟩ | |
n * (p * 2) ≡⟨ sym (*-assoc n p 2) ⟩ | |
(n * p) * 2 | |
∎ | |
timesEvenRight : ∀ n m → Even m → Even (n * m) | |
timesEvenRight n m em = Even′⇒Even (timesEven′Right n m (Even⇒Even′ em)) | |
timesEvenLeft : ∀ n m → Even n → Even (n * m) | |
timesEvenLeft n m rewrite *-comm n m = timesEvenRight m n |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment