Created
April 3, 2021 22:08
-
-
Save gallir/e8a0577c2a3067e248d2baf83fd4a165 to your computer and use it in GitHub Desktop.
covid prediction with fbprophet
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/bin/env python3 | |
import pandas as pd | |
import pycountry | |
from datetime import date, timedelta | |
from fbprophet import Prophet | |
from concurrent.futures import ProcessPoolExecutor | |
from .base import Series | |
COVID_URL = "https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv" | |
COUNTRIES_TO_2 = dict() | |
for c in pycountry.countries: | |
COUNTRIES_TO_2[c.alpha_3] = c.alpha_2.lower() | |
MIN_START = date.fromisoformat('2021-01-01') | |
class Covid(Series): | |
schema = { | |
"timestamp": "timestamp", | |
"item_id": "string", | |
"vaccines": "float", | |
} | |
columns = ["vaccines", "fully_vaccinated"] | |
timestamp_format = "yyyy-MM-dd" | |
def __init__(self, start, end, freq='W-MON', top=0, days=90, isos=None, use_cache=False): | |
super().__init__("covid", self.schema, start, end, freq, top=top, use_cache=use_cache) | |
self.isos = isos | |
prediction_end = end + timedelta(days=days) | |
range = pd.date_range(start=start, end=prediction_end, freq=freq, closed="left") | |
self.futures = pd.DataFrame(range, columns=['ds']) | |
self.base = pd.DataFrame(range, columns=['timestamp']) | |
def read(self): | |
# Read and fill data | |
super().read() | |
if self.df is not None: | |
return | |
print(f"Getting COVID data from {self.start} to {self.end}") | |
df = self.get_data() | |
self.df = self.predict(df) | |
self.store_cache() | |
def get_data(self): | |
df = pd.read_csv( | |
COVID_URL, | |
usecols=[ | |
"date", | |
"iso_code", | |
"total_vaccinations_per_hundred", | |
# "people_fully_vaccinated_per_hundred", | |
], | |
parse_dates=["date"], | |
) | |
df = df.rename(columns={ | |
"date": "timestamp", | |
"iso_code": "iso", | |
"total_vaccinations_per_hundred": "vaccines", | |
# "people_fully_vaccinated_per_hundred": "fully_vaccinated", | |
}) | |
df = df.loc[(df.timestamp >= self.start.isoformat()) & (df.timestamp < self.end.isoformat())] | |
df["iso"] = df["iso"].fillna("").replace(COUNTRIES_TO_2) | |
df = df[df['iso'].map(len) == 2] | |
return df | |
def predict(self, df): | |
all_df = pd.DataFrame() | |
data_isos = set(df['iso'].unique()) | |
if self.isos is None: | |
self.isos = data_isos | |
def concat(f): | |
nonlocal all_df | |
r = f.result() | |
all_df = pd.concat([r, all_df]) | |
with ProcessPoolExecutor(max_workers=4) as ex: | |
for iso in self.isos: | |
if iso not in data_isos: | |
print(f"Country {iso} not found") | |
iso_df['iso'] = iso | |
for c in self.columns: | |
iso_df[c] = 0.0 | |
all_df = pd.concat([iso_df, all_df]) | |
continue | |
df_c = df.loc[df['iso'] == iso] | |
iso_df = self.base.copy() | |
df_c = df.loc[df['iso'] == iso] | |
f = ex.submit(self.process_country, iso, df_c) | |
f.add_done_callback(concat) | |
all_df.sort_values(["timestamp", "iso"], inplace=True) | |
return all_df | |
def process_country(self, iso, data_df): | |
print(f"Processing {iso}") | |
futures = self.futures | |
base_df = self.base | |
for c in self.columns: | |
if c not in data_df.columns: | |
continue | |
pdf = data_df[['timestamp', c]].copy() | |
pdf[c] = pdf[c].fillna(method='ffill').fillna(0) | |
if self.freq != 'D': | |
pdf = pdf.resample(self.freq, on="timestamp", label="left").max() | |
pdf.rename(columns={c: 'y', 'timestamp': 'ds'}, inplace=True) | |
if c == "fully_vaccinated": | |
pdf['cap'] = 100 | |
elif c == "vaccines": | |
pdf['cap'] = 200 | |
pdf['floor'] = 0 | |
pdf = pdf.loc[pdf.y > 0] | |
if pdf.shape[0] < 2: | |
base_df[c] = 0.0 | |
continue | |
min_date = pdf.iloc[0]['ds'] | |
f = futures.loc[futures.ds >= min_date] | |
model = Prophet(yearly_seasonality=False, daily_seasonality=False, growth='linear') | |
model.fit(pdf) | |
forecast = model.predict(f) | |
res = forecast[['ds', 'yhat']].copy() | |
res.rename(columns={'yhat': c, 'ds': 'timestamp'}, inplace=True) | |
base_df = base_df.merge(res, on="timestamp", how='left') | |
base_df[c] = base_df[c].fillna(0).apply(lambda x: x if x > 0 else 0) | |
base_df['iso'] = iso | |
return base_df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment