Last active
March 2, 2018 00:50
-
-
Save gangtao/9cb30519790754ac82c5825c956206f1 to your computer and use it in GitHub Desktop.
Find the circle cross three points using tensor flow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy | |
# Parameters | |
learning_rate = 0.1 | |
training_epochs = 3000 | |
display_step = 50 | |
# Training Data, 3 points that form a triangel | |
train_X = numpy.asarray([3.0,6.0,9.0]) | |
train_Y = numpy.asarray([7.0,9.0,7.0]) | |
# tf Graph Input | |
X = tf.placeholder("float") | |
Y = tf.placeholder("float") | |
# Set vaibale for center | |
cx = tf.Variable(3, name="cx",dtype=tf.float32) | |
cy = tf.Variable(3, name="cy",dtype=tf.float32) | |
# Caculate the distance to the center and make them as equal as possible | |
distance = tf.pow(tf.add(tf.pow((X-cx),2),tf.pow((Y-cy),2)),0.5) | |
mean = tf.reduce_mean(distance) | |
cost = tf.reduce_sum(tf.pow((distance-mean),2)/3) | |
# Gradient descent | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) | |
# Initialize the variables (i.e. assign their default value) | |
init = tf.global_variables_initializer() | |
# Start training | |
with tf.Session() as sess: | |
sess.run(init) | |
# Fit all training data | |
for epoch in range(training_epochs): | |
sess.run(optimizer, feed_dict={X: train_X, Y: train_Y}) | |
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y}) | |
if (c - 0) < 0.0000000001: | |
break | |
#Display logs per epoch step | |
if (epoch+1) % display_step == 0: | |
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y}) | |
m = sess.run(mean, feed_dict={X: train_X, Y:train_Y}) | |
print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \ | |
"CX=", sess.run(cx), "CY=", sess.run(cy), "Mean=", "{:.9f}".format(m) | |
print "Optimization Finished!" | |
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y}) | |
print "Training cost=", training_cost, "CX=", round(sess.run(cx),2), "CY=", round(sess.run(cy),2), "R=", round(m,2), '\n' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment