Created
August 24, 2015 15:08
-
-
Save ganprad/9ed04f0e8c6e21437c8a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn import linear_model | |
# this is our test set, it's just a straight line with some | |
# Gaussian noise | |
xmin, xmax = -5, 5 | |
n_samples = 100 | |
np.random.seed(0) | |
X = np.random.normal(size=n_samples) | |
y = (X > 0).astype(np.float) | |
X[X > 0] *= 4 | |
X += .3 * np.random.normal(size=n_samples) | |
X = X[:, np.newaxis] | |
# run the classifier | |
clf = linear_model.LogisticRegression(C=1e5) | |
clf.fit(X, y) | |
# and plot the result | |
plt.figure(1, figsize=(4, 3)) | |
plt.clf() | |
plt.scatter(X.ravel(), y, color='black', zorder=20) | |
X_test = np.linspace(-5, 10, 300) | |
def model(x): | |
return 1 / (1 + np.exp(-x)) | |
loss = model(X_test * clf.coef_ + clf.intercept_).ravel() | |
plt.plot(X_test, loss, color='blue', linewidth=3) | |
ols = linear_model.LinearRegression() | |
ols.fit(X, y) | |
plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1) | |
plt.axhline(.5, color='.5') | |
plt.ylabel('y') | |
plt.xlabel('X') | |
plt.xticks(()) | |
plt.yticks(()) | |
plt.ylim(-.25, 1.25) | |
plt.xlim(-4, 10) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment