Last active
June 20, 2019 12:41
-
-
Save gaphex/14e4ab4fdbdae7bef4846e50a4c2c4a1 to your computer and use it in GitHub Desktop.
Nearest Neighbour retriever
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class TFRanker: | |
def __init__(self, dim, metric, top_k=3): | |
self.dim = dim | |
self.top_k = top_k | |
self.metric = metric | |
self.graph = tf.Graph() | |
self.session = tf.Session(graph=self.graph) | |
self.build_graph() | |
def build_graph(self): | |
with self.graph.as_default(): | |
self.query = tf.placeholder("float", [self.dim]) | |
self.kbase = tf.placeholder("float", [None, self.dim]) | |
distance = self.metric(self.kbase, self.query) | |
top_neg_dists, top_indices = tf.math.top_k(tf.negative(distance), k=self.top_k) | |
top_dists = tf.negative(top_neg_dists) | |
self.top_distances = top_dists | |
self.top_indices = top_indices | |
def predict(self, kbase, query): | |
with self.graph.as_default(): | |
I, D = self.session.run([self.top_indices, self.top_distances], | |
feed_dict={self.query: query, self.kbase: kbase}) | |
return I, D | |
def euclidean_distance(kbase, query): | |
sqr_distance = tf.reduce_sum( | |
tf.pow(kbase - query, 2), | |
reduction_indices=1) | |
distance = tf.sqrt(sqr_distance) | |
return distance |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment