Created
November 24, 2017 17:18
-
-
Save garrison/002ac101d275b0c4ac431ef71d647f6c to your computer and use it in GitHub Desktop.
issparse
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
ArrayFire/generate/generate.jl: "is_sparse" => "issparse", "sparse_to_dense" => "full", | |
ArrayFire/src/array.jl:import Base: Array, SparseMatrixCSC, copy, deepcopy_internal, issparse, sparse, full, complex, conj | |
ArrayFire/src/util.jl: @assert issparse(a) "AFArray is not sparse" | |
ArrayFire/src/util.jl: if issparse(a) | |
ArrayFire/src/util.jl:toa(a) = issparse(a) ? SparseMatrixCSC(a) : Array(a) | |
ArrayFire/src/wrap.jl:export is_row, is_scalar, is_single, is_vector, is_window_closed, isinf, isnan, issparse, iszero, le, lgamma | |
ArrayFire/src/wrap.jl:function issparse(arr::AFArray) | |
ArrayFire/test/sparse.jl:@test !issparse(A) | |
ArrayFire/test/sparse.jl:@test issparse(a1) | |
ArrayFire/test/sparse.jl:@test issparse(Aid) | |
ArrayFire/test/sparse.jl:@test !issparse(Ie2) | |
AxisAlgorithms/test/matmul.jl: if !issparse(M) | |
BasisMatrices/src/basis.jl:_all_sparse(b::Basis{N,TP}) where {N,TP} = all(issparse, TP.parameters) | |
BasisMatrices/src/BasisMatrices.jl:Base.issparse(::Type{T}) where {T<:BasisParams} = false | |
BasisMatrices/src/BasisMatrices.jl:for f in [:family, :family_name, :(Base.issparse), :(Base.eltype)] | |
BasisMatrices/src/lin.jl:Base.issparse(::Type{T}) where {T<:LinParams} = true | |
BasisMatrices/src/spline.jl:Base.issparse(::Type{T}) where {T<:SplineParams} = true | |
BasisMatrices/src/util.jl:Base.issparse(rk::RowKron) = map(issparse, rk.B) | |
BasisMatrices/test/cheb.jl: @test !issparse(ChebParams) | |
BasisMatrices/test/cheb.jl: @test !issparse(params) | |
BasisMatrices/test/lin.jl: @test issparse(bas1.params[1]) | |
BasisMatrices/test/lin.jl: @test issparse(LinParams) | |
BasisMatrices/test/spline.jl: @test issparse(params) | |
BasisMatrices/test/spline.jl: @test issparse(SplineParams) | |
BayesianNonparametrics/src/dpmm.jl: if issparse(X) | |
Binary file Knet/ChangeLog matches | |
Boltzmann/src/rbm.jl: if issparse(vis) | |
CoinOptServices/src/CoinOptServices.jl: if issparse(A) | |
CSDP/src/blockmat.h.jl: issparse::csdpshort | |
CSDP/src/blockmat.h.jl: issparse = numentries <= blocksize / 4 || numentries <= 15 # FIXME also if category (which is in C...) is DIAG | |
CSDP/src/blockmat.jl: 1) # issparse | |
CSDP/src/debug-mat.jl: println(io, " issparse : ", b.issparse ) | |
CSDP/src/declarations.jl: jblock.csdp.issparse = 0 | |
CSDP/src/declarations.jl: jblock.csdp.issparse = 1 | |
CSDP/src/declarations.jl: jblock.csdp.issparse = 1 | |
CVXOPT/src/CVXOPT.jl: if issparse(A) | |
Erdos/src/distances/distance.jl:# issparse(distmx)? (nnz(distmx) > 0) : !isempty(distmx) | |
Knet/deprecated/src7/data/ItemTensor.jl:# itembatch(x,n)=(issparse(x)?SparseArrayCPU:DynamicArrayCPU)(eltype(x),csize(x,n)) | |
Knet/deprecated/src7/data/ItemTensor.jl:itembatch(x,n)=(issparse(x) ? spzeros(eltype(x),csize(x,n)...) : Array(eltype(x),csize(x,n))) | |
Knet/deprecated/src7/deprecated/mlp.jl:xbatch(x,b)=(issparse(x) ? | |
Knet/deprecated/src7/deprecated/netinit.jl:# # if !dense && issparse(x) | |
Knet/deprecated/src7/deprecated/netinit.jl:# issparse(r.dif[i]) == nsparse || continue | |
Knet/deprecated/src7/deprecated/netinit.jl: issparse(r.out0[r.inputs[i][2]])) | |
Knet/deprecated/src7/deprecated/netinit.jl: issparse(r.tmp[i]) == nsparse) | |
Knet/deprecated/src7/deprecated/netinit.jl: n == length(r.op) && return issparse(dy) | |
Knet/deprecated/src7/deprecated/util.jl:# # if issparse(x) # todo: is this the right thing for all ops? | |
Knet/deprecated/src7/deprecated/util.jl:issimilar3(i,o)=(eltype(i) == eltype(o) && size(i) == size(o) && issparse(i) == issparse(o)) | |
Knet/deprecated/src7/net/initback.jl:# @assert (issimilar2(f.dif0[n], f.out0[n]) ) #todo: && issparse(f.dif0[n])==(f.sparse[n]!=nothing) | |
Knet/deprecated/src7/net/initback.jl:# @assert (issimilar2(f.tmp[n], f.out0[n]) && issparse(f.tmp[n])==(f.sparse[n]!=nothing)) | |
Knet/deprecated/src7/net/initback.jl: elseif issparse(a.out0) && getp(b,:grad) # rw = r * w with sparse r in nce | |
Knet/deprecated/src7/net/initback.jl: elseif issparse(b.out0) && getp(a,:grad) # y = w * x with sparse x in rnnlm | |
Knet/deprecated/src7/net/initback.jl:# elseif issparse(f.out0[i]) | |
Knet/deprecated/src7/net/initback.jl:# elseif issparse(f.out0[j]) | |
Knet/deprecated/src7/net/initback.jl:# # if !dense && issparse(x) | |
Knet/deprecated/src7/net/initback.jl:# if isa(f.op[i], Input) && issparse(f.out0[i]) | |
Knet/deprecated/src7/net/initback.jl: if issparse(a.out0) && issparse(b.out0) | |
Knet/deprecated/src7/net/initback.jl:# if issparse(f.out0[i]) && issparse(f.out0[j]) | |
Knet/deprecated/src7/net/initback.jl:# issparse(f.dif[i]) == nsparse || continue | |
Knet/deprecated/src7/net/initforw.jl: if isa(p.op,Input) && issparse(inputs[lastinput+=1]) | |
Knet/deprecated/src7/op/deprecated/mmul.jl: if x != nothing && issparse(x) | |
Knet/deprecated/src7/util/cudart.jl:import Base: isequal, convert, reshape, resize!, copy!, isempty, fill!, pointer, issparse, deepcopy_internal | |
Knet/deprecated/src7/util/cudart.jl:issparse(::CudaArray)=false | |
Knet/deprecated/src7/util/cusparse.jl:Base.issparse(a::CudaSparseMatrix) = true | |
Knet/deprecated/src7/util/cusparse.jl:Base.issparse(x::CudaSparseMatrixCSCU)=true | |
Knet/deprecated/src7/util/cusparse.jl:Base.issparse(x::CudaSparseMatrixCSRU)=true | |
Knet/deprecated/src7/util/deprecated/dense.jl:import Base: isequal, similar, convert, copy, copy!, resize!, issparse | |
Knet/deprecated/src7/util/deprecated/dense.jl:issparse(a::KUdense)=false | |
Knet/deprecated/src7/util/deprecated/sparse.jl:import Base: isequal, convert, similar, copy, copy!, eltype, length, ndims, size, isempty, issparse, stride, strides, full | |
Knet/deprecated/src7/util/deprecated/sparse.jl:issparse(::KUsparse)=true | |
Knet/deprecated/src7/util/deprecated/sparse.jl:# issparse(::$S)=true | |
Knet/examples/deprecated/ncelm.jl: if issparse(d.x) | |
Knet/examples/deprecated/rnnlm.jl: if issparse(d.x) | |
Knet/test/deprecated/testcolops.jl: a = issparse(b) ? convert(KUsparse{A}, copy(a0)) : convert(KUdense{A}, copy(a0)) | |
Knet/test/deprecated/testcolops.jl: if !issparse(b) | |
LinearOperators/src/LinearOperators.jl: if issparse(M) | |
MFCC/src/rasta.jl: ## if issparse(c) && ispsparse(r) | |
ModelReduction/src/craig_bampton.jl: if issparse(K) && issparse(M) | |
MultivariateStats/src/kpca.jl: evl, evc = if solver == :eigs || issparse(K) | |
PlotRecipes/src/graphs.jl: nosparse = !issparse(mat) # doesn't plot zeros from a sparse matrix | |
ProximalOperators/src/functions/indGraph.jl: if issparse(A) | |
ProximalOperators/test/test_graph.jl: B = ifelse(issparse(A), [A -speye(m)], [A -eye(m)]) | |
QuantEcon/test/test_ddp.jl: @test issparse(ddp0_sa.Q) | |
RobustLeastSquares/src/RobustLeastSquares.jl: if issparse(A) | |
SALSA/src/algorithms/adaptive_l1rda_alg.jl: check = ~issparse(X) | |
SALSA/src/algorithms/dropout_alg.jl: check = issparse(X) | |
SALSA/src/algorithms/l1rda_alg.jl: check = ~issparse(X) | |
SALSA/src/algorithms/pegasos_alg.jl: check = issparse(X) | |
SALSA/src/algorithms/reweighted_l1rda_alg.jl: check = ~issparse(X) | |
SALSA/src/algorithms/reweighted_l2rda_alg.jl: check = ~issparse(X) | |
SALSA/src/algorithms/sgd_alg.jl: check = issparse(X) | |
SALSA/src/algorithms/stochastic_rk_means.jl: check = issparse(X) | |
SALSA/src/SALSA.jl:import Base: size, getindex, issparse, sub, dot, show, isempty, At_mul_B!, readline | |
SALSA/src/support/data_wrapper.jl:issparse(f::DelimitedFile) = false | |
ScikitLearn/src/cross_validation.jl:## if sp.issparse(v): | |
ScikitLearn/src/cross_validation.jl: is_sparse = issparse(X) | |
ScikitLearn/src/dataframes.jl:Base.issparse(::DataFrame) = false | |
ScikitLearn/src/dataframes.jl: ## if any(sparse.issparse(fea) for fea in extracted): | |
ScikitLearn/src/pipeline.jl: if any(issparse, Xs) | |
ScikitLearn/src/pipeline.jl: ## if any(sparse.issparse(f) for f in Xs): | |
ScikitLearn/src/sk_utils.jl: if issparse(y) | |
SCIP/src/mpb_interface.jl: if issparse(A) | |
TimeModels/src/kalman_filter.jl: Ksparse = issparse(model.A(1)) && issparse(model.V(1)) && issparse(model.C(1)) | |
TimeModels/src/kalman_smooth.jl: Ksparse = issparse(model.A(1)) && issparse(model.V(1)) && issparse(model.C(1)) | |
VectorizedRoutines/src/matlab.jl: function accumarray2(subs, val, fun=sum, fillval=0; sz=maximum(subs,1), issparse=false) | |
VectorizedRoutines/src/matlab.jl: issparse ? sparse(A) : A |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment