Created
August 12, 2015 15:16
-
-
Save garymacindoe/895430c1e53a6e50cb35 to your computer and use it in GitHub Desktop.
Implementation of voxel traversal algorithm from "A Fast Voxel Traversal Algorithm for Ray Tracing" (Amanatides and Woo)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Implementation of voxel traversal algorithm from "A Fast Voxel Traversal | |
* Algorithm for Ray Tracing" (Amanatides and Woo). | |
*/ | |
#include <iostream> | |
#include <iterator> | |
#include <tuple> | |
#include <limits> | |
#include <algorithm> | |
#include <cmath> | |
template <class T> | |
struct vector3D { | |
vector3D() : x(0), y(0), z(0) {} | |
vector3D(const T & x, const T & y, const T & z) : x(x), y(y), z(z) {} | |
T x, y, z; | |
}; | |
template <class T> | |
vector3D<T> operator+(const vector3D<T> & v, const vector3D<T> & w) { | |
return vector3D<T>(v.x + w.x, v.y + w.y, v.z + w.z); | |
} | |
template <class T> | |
vector3D<T> operator/(const vector3D<T> & v, const vector3D<T> & w) { | |
return vector3D<T>(v.x / w.x, v.y / w.y, v.z / w.z); | |
} | |
template <class T> | |
vector3D<T> & operator+=(vector3D<T> & v, const vector3D<T> & w) { | |
v.x += w.x; | |
v.y += w.y; | |
v.z += w.z; | |
return v; | |
} | |
template <class T> | |
vector3D<T> operator*(const T & t, const vector3D<T> & v) { | |
return vector3D<T>(t * v.x, t * v.y, t * v.z); | |
} | |
template <class T> | |
std::ostream & operator<<(std::ostream & os, const vector3D<T> & v) { | |
return os << "(" << v.x << ", " << v.y << ", " << v.z << ")"; | |
} | |
class step_iterator : public std::iterator<std::forward_iterator_tag, | |
std::tuple<int, double>> { | |
public: | |
step_iterator(const vector3D<double> & u, const vector3D<double> & v, | |
int ldy, int ldz, | |
const vector3D<double> & grid) { | |
const vector3D<double> origin(u / grid); | |
index = std::floor(origin.x) * ldy * ldz + | |
std::floor(origin.y) * ldz + | |
std::floor(origin.z); | |
stepX = ((0 < v.x) - (v.x < 0)) * ldy * ldz; | |
stepY = ((0 < v.y) - (v.y < 0)) * ldz; | |
stepZ = (0 < v.z) - (v.z < 0); | |
tMaxX = std::numeric_limits<double>::infinity(); | |
tDeltaX = std::numeric_limits<double>::infinity(); | |
if (v.x != 0) { | |
const double t1 = (std::floor(origin.x) - origin.x) / v.x; | |
const double t2 = t1 + (grid.x / v.x); | |
tMaxX = std::max(t1, t2); | |
tDeltaX = grid.x / v.x; | |
} | |
tMaxY = std::numeric_limits<double>::infinity(); | |
tDeltaY = std::numeric_limits<double>::infinity(); | |
if (v.y != 0) { | |
const double t1 = (std::floor(origin.y) - origin.y) / v.y; | |
const double t2 = t1 + (grid.y / v.y); | |
tMaxY = std::max(t1, t2); | |
tDeltaY = grid.y / v.y; | |
} | |
tMaxZ = std::numeric_limits<double>::infinity(); | |
tDeltaZ = std::numeric_limits<double>::infinity(); | |
if (v.z != 0) { | |
const double t1 = (std::floor(origin.z) - origin.z) / v.z; | |
const double t2 = t1 + (grid.z / v.z); | |
tMaxZ = std::max(t1, t2); | |
tDeltaZ = grid.z / v.z; | |
} | |
tMax = 0; | |
tDelta = std::min(std::min(tMaxX, tMaxY), tMaxZ); | |
} | |
step_iterator & operator++() { | |
if (tMaxX <= tMaxY && tMaxX <= tMaxZ) { | |
index += stepX; | |
tMaxX += tDeltaX; | |
} | |
if (tMaxY <= tMaxZ && tMaxY <= tMaxZ) { | |
index += stepY; | |
tMaxY += tDeltaY; | |
} | |
if (tMaxZ <= tMaxX && tMaxZ <= tMaxY) { | |
index += stepZ; | |
tMaxZ += tDeltaZ; | |
} | |
tMax += tDelta; | |
tDelta = std::min(std::min(tMaxX, tMaxY), tMaxZ) - tMax; | |
return *this; | |
} | |
step_iterator operator++(int) { | |
step_iterator tmp(*this); | |
operator++(); | |
return tmp; | |
} | |
std::tuple<int, double> operator*() const { | |
return std::make_tuple(index, tDelta); | |
} | |
bool operator==(const step_iterator & that) const { | |
return this->index == that.index && | |
this->stepX == that.stepX && this->stepY == that.stepY && | |
this->stepZ == that.stepZ && | |
this->tMaxX == that.tMaxX && this->tMaxY == that.tMaxY && | |
this->tMaxZ == that.tMaxZ && | |
this->tDeltaX == that.tDeltaX && this->tDeltaY == that.tDeltaY && | |
this->tDeltaZ == that.tDeltaZ; | |
} | |
bool operator!=(const step_iterator & that) const { | |
return !(*this == that); | |
} | |
private: | |
int index, stepX, stepY, stepZ; | |
double tMaxX, tMaxY, tMaxZ, tDeltaX, tDeltaY, tDeltaZ, tMax, tDelta; | |
}; | |
int main() { | |
// Define a line starting at (0,0) travelling down/right at 45 degrees for | |
// the full length of the diagonal of the grid | |
{ | |
const vector3D<double> origin(0.0, 0.0, 0.0); | |
const vector3D<double> direction(std::sqrt(1.0/3.0), std::sqrt(1.0/3.0), | |
std::sqrt(1.0/3.0)); | |
const vector3D<double> separation(0.1, 0.1, 0.1); | |
std::cout << "Line: origin " << origin << ", direction " << direction << | |
", separation " << separation << std::endl; | |
step_iterator it(origin, direction, 10, 10, separation); | |
int index; | |
double t; | |
vector3D<double> position(origin); | |
for (int i = 0; i < 10; ++i, ++it) { | |
std::tie(index, t) = *it; | |
position += t * direction; | |
std::cout << "Travel " << t << " through " << index << " to " << | |
position << std::endl; | |
} | |
} | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
tMaxY <= tMaxZ && tMaxY <= tMaxZ
should betMaxY <= tMaxX && tMaxY <= tMaxZ
:)Cool gist