Last active
February 28, 2018 00:18
-
-
Save gasiort/72a4e20d2c9b5f93606599816eef8e3a to your computer and use it in GitHub Desktop.
guided backprop. w pytorchu
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class GuidedBackprop(torch.nn.Module): | |
def __init__(self, model, n_classes): | |
super().__init__() | |
self.model = model | |
self.n_classes = n_classes | |
self.gradients = None | |
self.model.eval() | |
self.update_relus() | |
self.hook_first_layer() | |
def hook_first_layer(self): | |
""" | |
hook ktory zapisuje ostatni gradient do atrybutu | |
""" | |
def hook_function(module, grad_in, grad_out): | |
self.gradients = grad_in[0] | |
first_layer = self.model.features[0] | |
first_layer.register_backward_hook(hook_function) | |
def update_relus(self): | |
""" | |
tutaj dla kazdej f. aktywacji dodajemy funkcje ktora dziala jak ReLU | |
dla gradientu przy propagacji wstecznej - to jedyna idea Guided Backprop. | |
""" | |
def relu_hook_function(module, grad_in, grad_out): | |
if isinstance(module, ReLU): | |
return (torch.clamp(grad_in[0], min=0.0),) | |
for pos, module in self.model.features._modules.items(): | |
if isinstance(module, ReLU): | |
module.register_backward_hook(relu_hook_function) | |
def forward(self, img, img_class): | |
# inferencja obrazka - forward pass | |
model_output = self.model(img) | |
# generujemy prawdziwa odpowiedz dla tego obrazka - one-hot | |
one_hot = torch.zeros(1, self.n_classes) | |
one_hot[0][img_class] = 1 | |
# propagacja wsteczna | |
self.model.zero_grad() | |
model_output.backward(gradient=one_hot) | |
return self.gradients.data.numpy()[0] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment