Last active
October 21, 2019 13:06
-
-
Save gatheluck/f70849dce795560c4e9be7cf5d07273a to your computer and use it in GitHub Desktop.
comparison of camera parameter optimization example of NMR and SoftRas. When use both model at same time, it will lead nan loss value.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import argparse | |
import glob | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from skimage.io import imread, imsave | |
import tqdm | |
import imageio | |
import neural_renderer as nr | |
import soft_renderer as sr | |
current_dir = os.path.dirname(os.path.realpath(__file__)) | |
data_dir = os.path.join(current_dir, 'data') | |
global only_softras | |
only_softras = False | |
class softrasModel(nn.Module): | |
def __init__(self, filename_obj, filename_ref=None): | |
super(softrasModel, self).__init__() | |
# load .obj | |
vertices, faces = nr.load_obj(filename_obj) | |
#self.register_buffer('vertices', vertices[None, :, :]) | |
#self.register_buffer('faces', faces[None, :, :]) | |
self.vertices = vertices[None, :, :].cuda() | |
self.faces = faces[None, :, :].cuda() | |
# create textures | |
textures = torch.ones(1, 2464, 1, 3, dtype=torch.float32) # [1, 2700, 1, 3] | |
#self.register_buffer('textures', textures) | |
self.textures = textures.cuda() | |
# load reference image | |
image_ref = torch.from_numpy((imread(filename_ref).max(-1) != 0).astype(np.float32)) | |
#self.register_buffer('image_ref', image_ref) | |
self.image_ref = image_ref.cuda() | |
# camera parameters | |
self.camera_position = nn.Parameter(torch.from_numpy(np.array([6, 10, -14], dtype=np.float32))) | |
print("softras nn.Parameter ID: ", id(self.camera_position)) | |
# setup renderer | |
sigma = 1e-5 | |
gamma = 1e-4 | |
renderer = sr.SoftRenderer(camera_mode='look_at', perspective=True, eye=self.camera_position, sigma_val=sigma, gamma_val=gamma) | |
self.renderer = renderer | |
def forward(self): | |
image = self.renderer(self.vertices, self.faces)[:,-1,:,:] | |
# print(image.shape) # torch.Size([1, 256, 256]) | |
loss = torch.sum((image - self.image_ref[None, :, :]) ** 2) | |
return loss | |
class nmrModel(nn.Module): | |
def __init__(self, filename_obj, filename_ref=None): | |
super(nmrModel, self).__init__() | |
# load .obj | |
vertices, faces = nr.load_obj(filename_obj) | |
# self.register_buffer('vertices', vertices[None, :, :]) | |
# self.register_buffer('faces', faces[None, :, :]) | |
self.vertices = vertices[None, :, :].cuda() | |
self.faces = faces[None, :, :].cuda() | |
# create textures | |
texture_size = 2 | |
textures = torch.ones(1, self.faces.shape[1], texture_size, texture_size, texture_size, 3, dtype=torch.float32) | |
# self.register_buffer('textures', textures) | |
self.textures = textures.cuda() | |
# load reference image | |
image_ref = torch.from_numpy((imread(filename_ref).max(-1) != 0).astype(np.float32)) | |
# self.register_buffer('image_ref', image_ref) | |
self.image_ref = image_ref.cuda() | |
# camera parameters | |
self.camera_position = nn.Parameter(torch.from_numpy(np.array([6, 10, -14], dtype=np.float32))) | |
print("nmr nn.Parameter ID: ", id(self.camera_position)) | |
# setup renderer | |
renderer = nr.Renderer(camera_mode='look_at', perspective=True) | |
renderer.eye = self.camera_position | |
self.renderer = renderer | |
def forward(self): | |
image = self.renderer(self.vertices, self.faces, mode='silhouettes') | |
# print(image.shape) # torch.Size([1, 256, 256]) | |
loss = torch.sum((image - self.image_ref[None, :, :]) ** 2) | |
return loss | |
def make_gif(filename): | |
with imageio.get_writer(filename, mode='I') as writer: | |
for filename in sorted(glob.glob('/tmp/_tmp_*.png')): | |
writer.append_data(imread(filename)) | |
os.remove(filename) | |
writer.close() | |
# def make_reference_image(filename_ref, filename_obj, use_nmr): | |
# model = Model(filename_obj) | |
# model.cuda() | |
# model.renderer.eye = nr.get_points_from_angles(2.732, 30, -15) | |
# images = model.renderer.render(model.vertices, model.faces, torch.tanh(model.textures)) | |
# image = images.detach().cpu().numpy()[0] | |
# imsave(filename_ref, image) | |
# def clip_grad_value_(parameters, clip_value): | |
# if isinstance(parameters, torch.Tensor): | |
# parameters = [parameters] | |
# clip_value = float(clip_value) | |
# for p in filter(lambda p: p.grad is not None, parameters): | |
# for i in range(p.size(0)): | |
# if (0 <= p.grad.data[i]) and (p.grad.data[i] < clip_value): | |
# p.grad.data[i].clamp_(clip_value=+clip_value) | |
# elif (-clip_value < p.grad.data[i]) and (p.grad.data[i] < 0): | |
# p.grad.data[i].clamp_(clip_value=-clip_value) | |
# else: | |
# pass | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-io', '--filename_obj', type=str, default=os.path.join(data_dir, 'teapot.obj')) | |
parser.add_argument('-ir', '--filename_ref', type=str, default=os.path.join(data_dir, 'example4_ref.png')) | |
parser.add_argument('-or', '--filename_output', type=str, default=os.path.join(data_dir, 'example4_result.gif')) | |
parser.add_argument('-mr', '--make_reference_image', type=int, default=0) | |
parser.add_argument('-g', '--gpu', type=int, default=0) | |
args = parser.parse_args() | |
# if args.make_reference_image: | |
# make_reference_image(args.filename_ref, args.filename_obj) | |
if not only_softras: | |
nmr_model = nmrModel(args.filename_obj, args.filename_ref) | |
nmr_model.cuda() | |
sr_model = softrasModel(args.filename_obj, args.filename_ref) | |
sr_model.cuda() | |
# optimizer = chainer.optimizers.Adam(alpha=0.1) | |
if not only_softras: | |
nmr_optimizer = torch.optim.Adam(nmr_model.parameters(), lr=0.1) | |
sr_optimizer = torch.optim.Adam(sr_model.parameters(), lr=0.1) | |
loop = tqdm.tqdm(range(300)) | |
for i in loop: | |
if not only_softras: | |
nmr_optimizer.zero_grad() | |
sr_optimizer.zero_grad() | |
if not only_softras: | |
nmr_loss = nmr_model() | |
sr_loss = sr_model() | |
if not only_softras: | |
nmr_loss.backward() | |
sr_loss.backward() | |
# minimal clip | |
#clip_grad_value_(nmr_model.parameters(), 1e-4) | |
#clip_grad_value_(sr_model.parameters(), 1e-4) | |
# max clip | |
#max_norm = 5.0 | |
#torch.nn.utils.clip_grad_norm_(nmr_model.parameters(), max_norm, norm_type=2) | |
#torch.nn.utils.clip_grad_norm_(sr_model.parameters(), max_norm, norm_type=2) | |
if not only_softras: | |
nmr_optimizer.step() | |
sr_optimizer.step() | |
if not only_softras: | |
nmr_images = nmr_model.renderer(nmr_model.vertices, nmr_model.faces, torch.tanh(nmr_model.textures)) | |
sr_images = sr_model.renderer(sr_model.vertices, sr_model.faces, torch.tanh(sr_model.textures)) | |
nmr_image = nmr_images[0][0,:,:,:].detach().cpu() if not only_softras else torch.zeros_like(sr_images)[0,0:3,:,:].detach().cpu() | |
sr_image = sr_images[0,0:3,:,:].detach().cpu() | |
image = torch.cat((nmr_image, sr_image), dim=-1).numpy().transpose(1,2,0) | |
imsave('/tmp/_tmp_%04d.png' % i, image) | |
if not only_softras: | |
loop.set_description('Optimizing (nmr_loss {:0.4f}, sr_loss {:0.4f})'.format(nmr_loss.data, sr_loss.data)) | |
#if (nmr_loss.item() < 70) and (sr_loss.item() < 70): break | |
else: | |
loop.set_description('Optimizing (sr_loss {:0.4f})'.format(sr_loss.data)) | |
#if sr_loss.item() < 70: break | |
make_gif(args.filename_output) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment