Skip to content

Instantly share code, notes, and snippets.

@gati
Created November 2, 2016 15:42
Show Gist options
  • Save gati/eba2bf1a0ecd3e541146e98f35d49739 to your computer and use it in GitHub Desktop.
Save gati/eba2bf1a0ecd3e541146e98f35d49739 to your computer and use it in GitHub Desktop.
Code for training an LSTM model for text classification using the keras library (Theano backend). Was used for guesscandidate.com.
from sklearn.cross_validation import train_test_split
from keras.preprocessing import sequence, text
from keras.models import Sequential
from keras.layers import (Dense, Dropout, Activation, Embedding, LSTM,
Convolution1D, MaxPooling1D)
# Embedding
max_features = 20000
maxlen = 100
embedding_size = 32
# Convolution
filter_length = 5
nb_filter = 64
pool_length = 4
# LSTM
lstm_output_size = 100
# Training
batch_size = 100
nb_epoch = 3
X = [x[1] for x in labeled_sample]
y = [x[0] for x in labeled_sample]
tk = text.Tokenizer(nb_words=2000, filters=text.base_filter(),
lower=True, split=" ")
tk.fit_on_texts(X)
X = tk.texts_to_sequences(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=42)
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
model = Sequential()
model.add(Embedding(max_features, embedding_size, input_length=maxlen))
model.add(Dropout(0.4))
model.add(Convolution1D(nb_filter=nb_filter,
filter_length=filter_length,
border_mode='valid',
activation='tanh',
subsample_length=1))
model.add(MaxPooling1D(pool_length=pool_length))
model.add(LSTM(lstm_output_size))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=20,
validation_data=(X_test, y_test))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment