Skip to content

Instantly share code, notes, and snippets.

@gatlin
Last active October 8, 2024 00:26
Show Gist options
  • Save gatlin/1115b46792be32a15a200b8dd12de9ae to your computer and use it in GitHub Desktop.
Save gatlin/1115b46792be32a15a200b8dd12de9ae to your computer and use it in GitHub Desktop.
Evaluate expressions with F-algebras in TypeScript
// inspiration:
// https://www.schoolofhaskell.com/user/bartosz/understanding-algebras
/**
* Higher-kinded Types.
* A higher-kinded type is a type that abstracts over some type that, in turn,
* abstracts over another type.
*
* To support them in TypeScript we have to write a few types first.
*/
declare const Type: unique symbol;
declare const Variable: unique symbol;
declare const Indirect: unique symbol;
/**
* A mechanism for delaying the instantiation of a generic type. See `$` next.
*/
interface HKT {
[Type]?: unknown;
[Variable]?: unknown;
}
/**
* Intuition: `$<FHKT, T>` eventually will evaluate to `F<T>` for some generic
* type `F` and its friend `FHKT`.
*/
type $<T extends HKT, A> = T extends { [Type]: unknown }
? (T & {
[Variable]: A;
})[typeof Type]
: {
[Indirect]: T; // forces tsc to retain reference to T
[Variable]: A;
};
/**
* A "Functor" is a type which supports a "map" operation.
* Array<T> is a functor: you can map a function `isEven(n: number): boolean`
* over an `Array<number>` to produce an `Array<boolean>`.
*/
interface Functor<T extends HKT> {
map<B>(
this: $<T, T[typeof Variable]>,
f: (a: T[typeof Variable]) => B
): $<T, B>;
}
/**
* Defines a fixed point for a higher-kinded type.
* Unfortunately this is more complicated than it should be to evade
* TypeScript's circularity checks.
*/
type Fix<F extends HKT> = {
fixed: $<F, Fix<F>>;
};
function fix<F extends HKT>(fixed: $<F, Fix<F>>): Fix<F> {
return { fixed };
}
function unfix<F extends HKT>(fixed: Fix<F>): $<F, Fix<F>> {
return fixed.fixed;
}
/**
* An F-algebra is
* - a Functor, F (with an HKT representation FHKT);
* - a carrier type A; and
* - a function `(fa: $<FHKT, A>) => A`.
*/
interface Algebra<F extends HKT, A> {
(fa: $<F, A>): A;
}
/**
* A simple arithmetic expression language supporting number constants,
* addition, and multiplication.
*
* Instead of directly referencing itself to represent nested expressions, the
* type of nested expressions is turned into a type variable and `ExprF` is a
* functor wrt that type variable.
*/
abstract class ExprF<A> implements Functor<ExprFHKT> {
abstract map<B>(f: (a: A) => B): ExprF<B>;
}
interface ExprFHKT extends HKT {
[Type]: ExprF<this[typeof Variable]>;
}
type Expr = Fix<ExprFHKT>;
/**
* Expression type 1: Number constants.
*/
class Constant<A> extends ExprF<A> {
constructor(public readonly value: number) {
super();
}
// eslint-disable-next-line @typescript-eslint/no-unused-vars
map<B>(_f: (a: A) => B): ExprF<B> {
return new Constant(this.value);
}
}
// Constructor that hides some unfortunate boilerplate I will hopefully
// eliminate in a future version.
function mkConstant(value: number): Expr {
return fix<ExprFHKT>(new Constant(value));
}
/**
* Expression type 2: Addition.
*/
class Add<A> extends ExprF<A> {
constructor(public readonly lhs: A, public readonly rhs: A) {
super();
}
map<B>(f: (a: A) => B): ExprF<B> {
return new Add(f(this.lhs), f(this.rhs));
}
}
function mkAdd(lhs: Expr, rhs: Expr): Expr {
return fix<ExprFHKT>(new Add(lhs, rhs));
}
/**
* Expression type 3: Multiplication.
*/
class Mul<A> extends ExprF<A> {
constructor(public readonly lhs: A, public readonly rhs: A) {
super();
}
map<B>(f: (a: A) => B): ExprF<B> {
return new Mul(f(this.lhs), f(this.rhs));
}
}
function mkMul(lhs: Expr, rhs: Expr): Expr {
return fix<ExprFHKT>(new Mul(lhs, rhs));
}
/**
* An F-algebra which evaluates an `ExprF<number>` to `number`.
* Note I wrote `ExprF`, not `Expr`.
* Also note how simple this function is.
*/
type ExprAlgebra = Algebra<ExprFHKT, number>;
const exprAlgebra: ExprAlgebra = (expr) => {
if (expr instanceof Constant) {
return expr.value;
}
else if (expr instanceof Add) {
return expr.lhs + expr.rhs;
}
else if (expr instanceof Mul) {
return expr.lhs * expr.rhs;
}
};
/**
* The main event.
* We have defined an expression grammar as a non-recursive functor type and an
* F-algebra defining how to evaluate the base case of each expression.
* With one line we can define an evaluator for any arbitrary `Expr`.
*/
function evaluate(expr: Expr): number {
return exprAlgebra(unfix<ExprFHKT>(expr).map(evaluate));
}
/**
* Demonstration: evaluation of a non-trivial nested arithmetic expression.
*/
const t1: Expr = mkAdd(
mkMul(mkConstant(5), mkAdd(mkConstant(-1), mkConstant(2))),
mkMul(mkConstant(2), mkConstant(7))
);
console.log(evaluate(t1)); // prints "19"
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment