Created
December 13, 2017 22:11
-
-
Save gauravkaila/6754d731dd67c8ab5c9ae22b82ae85a5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def make_tensor_proto(values, dtype=None, shape=None, verify_shape=False): | |
"""Create a TensorProto. | |
Args: | |
values: Values to put in the TensorProto. | |
dtype: Optional tensor_pb2 DataType value. | |
shape: List of integers representing the dimensions of tensor. | |
verify_shape: Boolean that enables verification of a shape of values. | |
Returns: | |
A TensorProto. Depending on the type, it may contain data in the | |
"tensor_content" attribute, which is not directly useful to Python programs. | |
To access the values you should convert the proto back to a numpy ndarray | |
with tensor_util.MakeNdarray(proto). | |
Raises: | |
TypeError: if unsupported types are provided. | |
ValueError: if arguments have inappropriate values or if verify_shape is | |
True and shape of values is not equals to a shape from the argument. | |
make_tensor_proto accepts "values" of a python scalar, a python list, a | |
numpy ndarray, or a numpy scalar. | |
If "values" is a python scalar or a python list, make_tensor_proto | |
first convert it to numpy ndarray. If dtype is None, the | |
conversion tries its best to infer the right numpy data | |
type. Otherwise, the resulting numpy array has a compatible data | |
type with the given dtype. | |
In either case above, the numpy ndarray (either the caller provided | |
or the auto converted) must have the compatible type with dtype. | |
make_tensor_proto then converts the numpy array to a tensor proto. | |
If "shape" is None, the resulting tensor proto represents the numpy | |
array precisely. | |
Otherwise, "shape" specifies the tensor's shape and the numpy array | |
can not have more elements than what "shape" specifies. | |
""" | |
if dtype: | |
dtype = dtypes.as_dtype(dtype) | |
is_quantized = (dtype in [dtypes.qint8, dtypes.quint8, dtypes.qint16, | |
dtypes.quint16, dtypes.qint32]) | |
# We first convert value to a numpy array or scalar. | |
if isinstance(values, (np.ndarray, np.generic)): | |
if dtype: | |
nparray = values.astype(dtype.as_numpy_dtype) | |
else: | |
nparray = values | |
else: | |
if values is None: | |
raise ValueError("None values not supported.") | |
# if dtype is provided, forces numpy array to be the type | |
# provided if possible. | |
if dtype and dtype.is_numpy_compatible: | |
np_dt = dtype.as_numpy_dtype | |
else: | |
np_dt = None | |
if np.prod(shape) == 0: | |
nparray = np.empty(shape, dtype=np_dt) | |
else: | |
_AssertCompatible(values, dtype) | |
nparray = np.array(values, dtype=np_dt) | |
# check to them. | |
# We need to pass in quantized values as tuples, so don't apply the shape | |
if (list(nparray.shape) != _GetDenseDimensions(values) and | |
not is_quantized): | |
raise ValueError("""Argument must be a dense tensor: %s""" | |
""" - got shape %s, but wanted %s.""" % ( | |
values, list(nparray.shape), | |
_GetDenseDimensions(values))) | |
# python/numpy default float type is float64. We prefer float32 instead. | |
if (nparray.dtype == np.float64) and dtype is None: | |
nparray = nparray.astype(np.float32) | |
# python/numpy default int type is int64. We prefer int32 instead. | |
elif (nparray.dtype == np.int64) and dtype is None: | |
downcasted_array = nparray.astype(np.int32) | |
# Do not down cast if it leads to precision loss. | |
if np.array_equal(downcasted_array, nparray): | |
nparray = downcasted_array | |
# if dtype is provided, it must be compatible with what numpy | |
# conversion says. | |
numpy_dtype = dtypes.as_dtype(nparray.dtype) | |
if numpy_dtype is None: | |
raise TypeError("Unrecognized data type: %s" % nparray.dtype) | |
# If dtype was specified and is a quantized type, we convert | |
# numpy_dtype back into the quantized version. | |
if is_quantized: | |
numpy_dtype = dtype | |
if dtype is not None and (not hasattr(dtype, "base_dtype") or | |
dtype.base_dtype != numpy_dtype.base_dtype): | |
raise TypeError("Incompatible types: %s vs. %s" % (dtype, nparray.dtype)) | |
# If shape is not given, get the shape from the numpy array. | |
if shape is None: | |
shape = nparray.shape | |
is_same_size = True | |
shape_size = nparray.size | |
else: | |
shape = [int(dim) for dim in shape] | |
shape_size = np.prod(shape) | |
is_same_size = shape_size == nparray.size | |
if verify_shape: | |
if not nparray.shape == tuple(shape): | |
raise TypeError("Expected Tensor's shape: %s, got %s." % | |
(tuple(shape), nparray.shape)) | |
if nparray.size > shape_size: | |
raise ValueError( | |
"Too many elements provided. Needed at most %d, but received %d" % | |
(shape_size, nparray.size)) | |
tensor_proto = tensor_pb2.TensorProto( | |
dtype=numpy_dtype.as_datatype_enum, | |
tensor_shape=tensor_shape.as_shape(shape).as_proto()) | |
if is_same_size and numpy_dtype in _TENSOR_CONTENT_TYPES and shape_size > 1: | |
if nparray.size * nparray.itemsize >= (1 << 31): | |
raise ValueError( | |
"Cannot create a tensor proto whose content is larger than 2GB.") | |
tensor_proto.tensor_content = nparray.tostring() | |
return tensor_proto | |
# If we were not given values as a numpy array, compute the proto_values | |
# from the given values directly, to avoid numpy trimming nulls from the | |
# strings. Since values could be a list of strings, or a multi-dimensional | |
# list of lists that might or might not correspond to the given shape, | |
# we flatten it conservatively. | |
if numpy_dtype == dtypes.string and not isinstance(values, np.ndarray): | |
proto_values = _FlattenToStrings(values) | |
tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values]) | |
return tensor_proto | |
# TensorFlow expects C order (a.k.a., eigen row major). | |
proto_values = nparray.ravel() | |
append_fn = GetNumpyAppendFn(proto_values.dtype) | |
if append_fn is None: | |
raise TypeError("Element type not supported in TensorProto: %s" % | |
numpy_dtype.name) | |
append_fn(tensor_proto, proto_values) | |
return tensor_proto |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment