Created
December 5, 2017 18:46
-
-
Save gauravkaila/7e05510cd2191c71059b93c3a9257350 to your computer and use it in GitHub Desktop.
Code to comment out in the exporter.py script
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Functions to export object detection inference graph.""" | |
import logging | |
import os | |
import tempfile | |
import tensorflow as tf | |
from tensorflow.core.protobuf import rewriter_config_pb2 | |
from tensorflow.python import pywrap_tensorflow | |
from tensorflow.python.client import session | |
from tensorflow.python.framework import graph_util | |
from tensorflow.python.platform import gfile | |
from tensorflow.python.saved_model import signature_constants | |
from tensorflow.python.training import saver as saver_lib | |
from object_detection.builders import model_builder | |
from object_detection.core import standard_fields as fields | |
from object_detection.data_decoders import tf_example_decoder | |
slim = tf.contrib.slim | |
# TODO: Replace with freeze_graph.freeze_graph_with_def_protos when | |
# newer version of Tensorflow becomes more common. | |
def freeze_graph_with_def_protos( | |
input_graph_def, | |
input_saver_def, | |
input_checkpoint, | |
output_node_names, | |
restore_op_name, | |
filename_tensor_name, | |
clear_devices, | |
initializer_nodes, | |
optimize_graph=True, | |
variable_names_blacklist=''): | |
"""Converts all variables in a graph and checkpoint into constants.""" | |
del restore_op_name, filename_tensor_name # Unused by updated loading code. | |
# 'input_checkpoint' may be a prefix if we're using Saver V2 format | |
if not saver_lib.checkpoint_exists(input_checkpoint): | |
raise ValueError( | |
'Input checkpoint "' + input_checkpoint + '" does not exist!') | |
if not output_node_names: | |
raise ValueError( | |
'You must supply the name of a node to --output_node_names.') | |
# Remove all the explicit device specifications for this node. This helps to | |
# make the graph more portable. | |
if clear_devices: | |
for node in input_graph_def.node: | |
node.device = '' | |
with tf.Graph().as_default(): | |
tf.import_graph_def(input_graph_def, name='') | |
if optimize_graph: | |
logging.info('Graph Rewriter optimizations enabled') | |
rewrite_options = rewriter_config_pb2.RewriterConfig( | |
optimize_tensor_layout=True) | |
rewrite_options.optimizers.append('pruning') | |
rewrite_options.optimizers.append('constfold') | |
rewrite_options.optimizers.append('layout') | |
graph_options = tf.GraphOptions( | |
rewrite_options=rewrite_options, infer_shapes=True) | |
else: | |
logging.info('Graph Rewriter optimizations disabled') | |
graph_options = tf.GraphOptions() | |
config = tf.ConfigProto(graph_options=graph_options) | |
with session.Session(config=config) as sess: | |
if input_saver_def: | |
saver = saver_lib.Saver(saver_def=input_saver_def) | |
saver.restore(sess, input_checkpoint) | |
else: | |
var_list = {} | |
reader = pywrap_tensorflow.NewCheckpointReader(input_checkpoint) | |
var_to_shape_map = reader.get_variable_to_shape_map() | |
for key in var_to_shape_map: | |
try: | |
tensor = sess.graph.get_tensor_by_name(key + ':0') | |
except KeyError: | |
# This tensor doesn't exist in the graph (for example it's | |
# 'global_step' or a similar housekeeping element) so skip it. | |
continue | |
var_list[key] = tensor | |
saver = saver_lib.Saver(var_list=var_list) | |
saver.restore(sess, input_checkpoint) | |
if initializer_nodes: | |
sess.run(initializer_nodes) | |
variable_names_blacklist = (variable_names_blacklist.split(',') if | |
variable_names_blacklist else None) | |
output_graph_def = graph_util.convert_variables_to_constants( | |
sess, | |
input_graph_def, | |
output_node_names.split(','), | |
variable_names_blacklist=variable_names_blacklist) | |
return output_graph_def | |
def replace_variable_values_with_moving_averages(graph, | |
current_checkpoint_file, | |
new_checkpoint_file): | |
"""Replaces variable values in the checkpoint with their moving averages. | |
If the current checkpoint has shadow variables maintaining moving averages of | |
the variables defined in the graph, this function generates a new checkpoint | |
where the variables contain the values of their moving averages. | |
Args: | |
graph: a tf.Graph object. | |
current_checkpoint_file: a checkpoint containing both original variables and | |
their moving averages. | |
new_checkpoint_file: file path to write a new checkpoint. | |
""" | |
with graph.as_default(): | |
variable_averages = tf.train.ExponentialMovingAverage(0.0) | |
ema_variables_to_restore = variable_averages.variables_to_restore() | |
with tf.Session() as sess: | |
read_saver = tf.train.Saver(ema_variables_to_restore) | |
read_saver.restore(sess, current_checkpoint_file) | |
write_saver = tf.train.Saver() | |
write_saver.save(sess, new_checkpoint_file) | |
def _image_tensor_input_placeholder(input_shape=None): | |
"""Returns input placeholder and a 4-D uint8 image tensor.""" | |
if input_shape is None: | |
input_shape = (None, None, None, 3) | |
input_tensor = tf.placeholder( | |
dtype=tf.uint8, shape=input_shape, name='image_tensor') | |
return input_tensor, input_tensor | |
def _tf_example_input_placeholder(): | |
"""Returns input that accepts a batch of strings with tf examples. | |
Returns: | |
a tuple of input placeholder and the output decoded images. | |
""" | |
batch_tf_example_placeholder = tf.placeholder( | |
tf.string, shape=[None], name='tf_example') | |
def decode(tf_example_string_tensor): | |
tensor_dict = tf_example_decoder.TfExampleDecoder().decode( | |
tf_example_string_tensor) | |
image_tensor = tensor_dict[fields.InputDataFields.image] | |
return image_tensor | |
return (batch_tf_example_placeholder, | |
tf.map_fn(decode, | |
elems=batch_tf_example_placeholder, | |
dtype=tf.uint8, | |
parallel_iterations=32, | |
back_prop=False)) | |
def _encoded_image_string_tensor_input_placeholder(): | |
"""Returns input that accepts a batch of PNG or JPEG strings. | |
Returns: | |
a tuple of input placeholder and the output decoded images. | |
""" | |
batch_image_str_placeholder = tf.placeholder( | |
dtype=tf.string, | |
shape=[None], | |
name='encoded_image_string_tensor') | |
def decode(encoded_image_string_tensor): | |
image_tensor = tf.image.decode_image(encoded_image_string_tensor, | |
channels=3) | |
image_tensor.set_shape((None, None, 3)) | |
return image_tensor | |
return (batch_image_str_placeholder, | |
tf.map_fn( | |
decode, | |
elems=batch_image_str_placeholder, | |
dtype=tf.uint8, | |
parallel_iterations=32, | |
back_prop=False)) | |
input_placeholder_fn_map = { | |
'image_tensor': _image_tensor_input_placeholder, | |
'encoded_image_string_tensor': | |
_encoded_image_string_tensor_input_placeholder, | |
'tf_example': _tf_example_input_placeholder, | |
} | |
def _add_output_tensor_nodes(postprocessed_tensors, | |
output_collection_name='inference_op'): | |
"""Adds output nodes for detection boxes and scores. | |
Adds the following nodes for output tensors - | |
* num_detections: float32 tensor of shape [batch_size]. | |
* detection_boxes: float32 tensor of shape [batch_size, num_boxes, 4] | |
containing detected boxes. | |
* detection_scores: float32 tensor of shape [batch_size, num_boxes] | |
containing scores for the detected boxes. | |
* detection_classes: float32 tensor of shape [batch_size, num_boxes] | |
containing class predictions for the detected boxes. | |
* detection_masks: (Optional) float32 tensor of shape | |
[batch_size, num_boxes, mask_height, mask_width] containing masks for each | |
detection box. | |
Args: | |
postprocessed_tensors: a dictionary containing the following fields | |
'detection_boxes': [batch, max_detections, 4] | |
'detection_scores': [batch, max_detections] | |
'detection_classes': [batch, max_detections] | |
'detection_masks': [batch, max_detections, mask_height, mask_width] | |
(optional). | |
'num_detections': [batch] | |
output_collection_name: Name of collection to add output tensors to. | |
Returns: | |
A tensor dict containing the added output tensor nodes. | |
""" | |
label_id_offset = 1 | |
boxes = postprocessed_tensors.get('detection_boxes') | |
scores = postprocessed_tensors.get('detection_scores') | |
classes = postprocessed_tensors.get('detection_classes') + label_id_offset | |
masks = postprocessed_tensors.get('detection_masks') | |
num_detections = postprocessed_tensors.get('num_detections') | |
outputs = {} | |
outputs['detection_boxes'] = tf.identity(boxes, name='detection_boxes') | |
outputs['detection_scores'] = tf.identity(scores, name='detection_scores') | |
outputs['detection_classes'] = tf.identity(classes, name='detection_classes') | |
outputs['num_detections'] = tf.identity(num_detections, name='num_detections') | |
if masks is not None: | |
outputs['detection_masks'] = tf.identity(masks, name='detection_masks') | |
for output_key in outputs: | |
tf.add_to_collection(output_collection_name, outputs[output_key]) | |
if masks is not None: | |
tf.add_to_collection(output_collection_name, outputs['detection_masks']) | |
return outputs | |
# def _write_frozen_graph(frozen_graph_path, frozen_graph_def): | |
# """Writes frozen graph to disk. | |
# | |
# Args: | |
# frozen_graph_path: Path to write inference graph. | |
# frozen_graph_def: tf.GraphDef holding frozen graph. | |
# """ | |
# with gfile.GFile(frozen_graph_path, 'wb') as f: | |
# f.write(frozen_graph_def.SerializeToString()) | |
# logging.info('%d ops in the final graph.', len(frozen_graph_def.node)) | |
def _write_saved_model(saved_model_path, | |
trained_checkpoint_prefix, | |
inputs, | |
outputs): | |
"""Writes SavedModel to disk. | |
Args: | |
saved_model_path: Path to write SavedModel. | |
trained_checkpoint_prefix: path to trained_checkpoint_prefix. | |
inputs: The input image tensor to use for detection. | |
outputs: A tensor dictionary containing the outputs of a DetectionModel. | |
""" | |
saver = tf.train.Saver() | |
with session.Session() as sess: | |
saver.restore(sess, trained_checkpoint_prefix) | |
builder = tf.saved_model.builder.SavedModelBuilder(saved_model_path) | |
tensor_info_inputs = { | |
'inputs': tf.saved_model.utils.build_tensor_info(inputs)} | |
tensor_info_outputs = {} | |
for k, v in outputs.items(): | |
tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v) | |
detection_signature = ( | |
tf.saved_model.signature_def_utils.build_signature_def( | |
inputs=tensor_info_inputs, | |
outputs=tensor_info_outputs, | |
method_name=signature_constants.PREDICT_METHOD_NAME)) | |
builder.add_meta_graph_and_variables( | |
sess, [tf.saved_model.tag_constants.SERVING], | |
signature_def_map={ | |
'detection_signature': | |
detection_signature, | |
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: | |
detection_signature, | |
}, | |
) | |
builder.save() | |
def _export_inference_graph(input_type, | |
detection_model, | |
use_moving_averages, | |
trained_checkpoint_prefix, | |
output_directory, | |
additional_output_tensor_names=None, | |
input_shape=None, | |
optimize_graph=True, | |
output_collection_name='inference_op'): | |
"""Export helper.""" | |
#tf.gfile.MakeDirs(output_directory) | |
#frozen_graph_path = os.path.join(output_directory, | |
# 'frozen_inference_graph.pb') | |
#saved_model_path = os.path.join(output_directory, 'saved_model') | |
saved_model_path = output_directory | |
if input_type not in input_placeholder_fn_map: | |
raise ValueError('Unknown input type: {}'.format(input_type)) | |
placeholder_args = {} | |
if input_shape is not None: | |
if input_type != 'image_tensor': | |
raise ValueError('Can only specify input shape for `image_tensor` ' | |
'inputs.') | |
placeholder_args['input_shape'] = input_shape | |
placeholder_tensor, input_tensors = input_placeholder_fn_map[input_type]( | |
**placeholder_args) | |
inputs = tf.to_float(input_tensors) | |
preprocessed_inputs = detection_model.preprocess(inputs) | |
output_tensors = detection_model.predict(preprocessed_inputs) | |
postprocessed_tensors = detection_model.postprocess(output_tensors) | |
outputs = _add_output_tensor_nodes(postprocessed_tensors, | |
output_collection_name) | |
# Add global step to the graph. | |
slim.get_or_create_global_step() | |
if use_moving_averages: | |
temp_checkpoint_file = tempfile.NamedTemporaryFile() | |
replace_variable_values_with_moving_averages( | |
tf.get_default_graph(), trained_checkpoint_prefix, | |
temp_checkpoint_file.name) | |
checkpoint_to_use = temp_checkpoint_file.name | |
else: | |
checkpoint_to_use = trained_checkpoint_prefix | |
saver = tf.train.Saver() | |
input_saver_def = saver.as_saver_def() | |
if additional_output_tensor_names is not None: | |
output_node_names = ','.join(outputs.keys()+additional_output_tensor_names) | |
else: | |
output_node_names = ','.join(outputs.keys()) | |
frozen_graph_def = freeze_graph_with_def_protos( | |
input_graph_def=tf.get_default_graph().as_graph_def(), | |
input_saver_def=input_saver_def, | |
input_checkpoint=checkpoint_to_use, | |
output_node_names=output_node_names, | |
restore_op_name='save/restore_all', | |
filename_tensor_name='save/Const:0', | |
clear_devices=True, | |
optimize_graph=optimize_graph, | |
initializer_nodes='') | |
#_write_frozen_graph(frozen_graph_path, frozen_graph_def) | |
_write_saved_model(saved_model_path, trained_checkpoint_prefix, | |
placeholder_tensor, outputs) | |
def export_inference_graph(input_type, | |
pipeline_config, | |
trained_checkpoint_prefix, | |
output_directory, | |
input_shape=None, | |
optimize_graph=True, | |
output_collection_name='inference_op', | |
additional_output_tensor_names=None): | |
"""Exports inference graph for the model specified in the pipeline config. | |
Args: | |
input_type: Type of input for the graph. Can be one of [`image_tensor`, | |
`tf_example`]. | |
pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto. | |
trained_checkpoint_prefix: Path to the trained checkpoint file. | |
output_directory: Path to write outputs. | |
input_shape: Sets a fixed shape for an `image_tensor` input. If not | |
specified, will default to [None, None, None, 3]. | |
optimize_graph: Whether to optimize graph using Grappler. | |
output_collection_name: Name of collection to add output tensors to. | |
If None, does not add output tensors to a collection. | |
additional_output_tensor_names: list of additional output | |
tensors to include in the frozen graph. | |
""" | |
detection_model = model_builder.build(pipeline_config.model, | |
is_training=False) | |
_export_inference_graph(input_type, detection_model, | |
pipeline_config.eval_config.use_moving_averages, | |
trained_checkpoint_prefix, | |
output_directory, additional_output_tensor_names, | |
input_shape, optimize_graph, output_collection_name) | |
Using exporter.py is giving me following error:
Caused by op 'save/Assign_259', defined at:
File "export_model.py", line 30, in <module>
object_detection.exporter.export_inference_graph(input_type='image_tensor',pipeline_config=pipeline_proto,trained_checkpoint_prefix=input_checkpoint,output_directory=output_directory)
File "/home/deploy/models/research/object_detection/exporter.py", line 397, in export_inference_graph
input_shape, optimize_graph, output_collection_name)
File "/home/deploy/models/research/object_detection/exporter.py", line 361, in _export_inference_graph
initializer_nodes='')
File "/home/deploy/models/research/object_detection/exporter.py", line 67, in freeze_graph_with_def_protos
tf.import_graph_def(input_graph_def, name='')
File "/home/deploy/.local/lib/python3.5/site-packages/tensorflow/python/util/deprecation.py", line 488, in new_func
return func(*args, **kwargs)
File "/home/deploy/.local/lib/python3.5/site-packages/tensorflow/python/framework/importer.py", line 442, in import_graph_def
_ProcessNewOps(graph)
File "/home/deploy/.local/lib/python3.5/site-packages/tensorflow/python/framework/importer.py", line 234, in _ProcessNewOps
for new_op in graph._add_new_tf_operations(compute_devices=False): # pylint: disable=protected-access
File "/home/deploy/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 3440, in _add_new_tf_operations
for c_op in c_api_util.new_tf_operations(self)
File "/home/deploy/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 3440, in <listcomp>
for c_op in c_api_util.new_tf_operations(self)
File "/home/deploy/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 3299, in _create_op_from_tf_operation
ret = Operation(c_op, self)
File "/home/deploy/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1770, in __init__
self._traceback = tf_stack.extract_stack()
InvalidArgumentError (see above for traceback): Restoring from checkpoint failed. This is most likely due to a mismatch between the current graph and the graph from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error:
Assign requires shapes of both tensors to match. lhs shape= [2] rhs shape= [3]
[[node save/Assign_259 (defined at /home/deploy/models/research/object_detection/exporter.py:67) = Assign[T=DT_FLOAT, _class=["loc:@SecondStageBoxPredictor/ClassPredictor/biases"], use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](SecondStageBoxPredictor/ClassPredictor/biases, save/RestoreV2/_519)]]
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Updates: using tf v1.10.1
change
optimize_tensor_layout=True
tolayout_optimizer=True
, check this for details tensorflow/models#2861.predict and postprocess function requires true_image_shapes as second positional argument. just use this code:
preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs)
output_tensors = detection_model.predict(preprocessed_inputs, true_image_shapes)
postprocessed_tensors = detection_model.postprocess(output_tensors, true_image_shapes)