Last active
June 10, 2021 08:02
-
-
Save gautamborad/622fdfa344021ccf91cd3215094dc0a0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Eager: | |
===== | |
one_d: | |
tensor([3, 3, 0], dtype=torch.uint8) | |
TorchScript: | |
===== | |
one_d: | |
tensor([ 3, 3, 0]) | |
[ CPUByteType{3} ] | |
Eager: | |
===== | |
two_d: | |
tensor([[3, 4], | |
[4, 3]], dtype=torch.uint8) | |
TorchScript: | |
===== | |
two_d: | |
tensor([[ 3, 4], | |
[ 4, 3]]) | |
[ CPUByteType{2,2} ] | |
Eager: | |
===== | |
three_d: | |
tensor([[[2, 2], | |
[1, 2]], | |
[[2, 2], | |
[1, 1]]], dtype=torch.uint8) | |
TorchScript: | |
===== | |
three_d: | |
tensor([[[ 2, 2], | |
[ 1, 2]], | |
[[ 2, 2], | |
[ 1, 1]]]) | |
[ CPUByteType{2,2,2} ] | |
Eager: | |
===== | |
four_d: | |
tensor([[[[3, 3, 6], | |
[4, 4, 4], | |
[5, 6, 3]], | |
[[6, 4, 3], | |
[4, 6, 5], | |
[5, 6, 3]], | |
[[4, 3, 4], | |
[5, 6, 3], | |
[5, 4, 5]]], | |
[[[6, 6, 5], | |
[6, 5, 4], | |
[5, 5, 4]], | |
[[3, 4, 3], | |
[6, 3, 4], | |
[3, 4, 4]], | |
[[4, 6, 3], | |
[5, 6, 3], | |
[5, 6, 5]]], | |
[[[6, 4, 5], | |
[6, 6, 3], | |
[5, 5, 3]], | |
[[5, 5, 5], | |
[3, 6, 6], | |
[3, 6, 5]], | |
[[6, 6, 4], | |
[6, 4, 3], | |
[5, 6, 6]]]], dtype=torch.uint8) | |
TorchScript: | |
===== | |
four_d: | |
tensor([[[[ 3, 3, 6], | |
[ 4, 4, 4], | |
[ 5, 6, 3]], | |
[[ 6, 4, 3], | |
[ 4, 6, 5], | |
[ 5, 6, 3]], | |
[[ 4, 3, 4], | |
[ 5, 6, 3], | |
[ 5, 4, 5]]], | |
[[[ 6, 6, 5], | |
[ 6, 5, 4], | |
[ 5, 5, 4]], | |
[[ 3, 4, 3], | |
[ 6, 3, 4], | |
[ 3, 4, 4]], | |
[[ 4, 6, 3], | |
[ 5, 6, 3], | |
[ 5, 6, 5]]], | |
[[[ 6, 4, 5], | |
[ 6, 6, 3], | |
[ 5, 5, 3]], | |
[[ 5, 5, 5], | |
[ 3, 6, 6], | |
[ 3, 6, 5]], | |
[[ 6, 6, 4], | |
[ 6, 4, 3], | |
[ 5, 6, 6]]]]) | |
[ CPUByteType{3,3,3,3} ] | |
------------------------------------------------------------------- | |
Eager: | |
===== | |
one_d: | |
tensor([1, 1, 0], dtype=torch.int8) | |
TorchScript: | |
===== | |
one_d: | |
tensor([ 1, 1, 0]) | |
[ CPUCharType{3} ] | |
Eager: | |
===== | |
two_d: | |
tensor([[4, 2], | |
[3, 3]], dtype=torch.int8) | |
TorchScript: | |
===== | |
two_d: | |
tensor([[ 4, 2], | |
[ 3, 3]]) | |
[ CPUCharType{2,2} ] | |
Eager: | |
===== | |
three_d: | |
tensor([[[1, 1], | |
[2, 1]], | |
[[1, 2], | |
[2, 1]]], dtype=torch.int8) | |
TorchScript: | |
===== | |
three_d: | |
tensor([[[ 1, 1], | |
[ 2, 1]], | |
[[ 1, 2], | |
[ 2, 1]]]) | |
[ CPUCharType{2,2,2} ] | |
Eager: | |
===== | |
four_d: | |
tensor([[[[3, 4, 4], | |
[3, 3, 6], | |
[4, 4, 4]], | |
[[4, 5, 4], | |
[5, 4, 6], | |
[5, 6, 5]], | |
[[3, 3, 6], | |
[6, 3, 5], | |
[3, 5, 6]]], | |
[[[4, 5, 3], | |
[4, 4, 3], | |
[3, 6, 5]], | |
[[5, 6, 3], | |
[3, 5, 6], | |
[5, 4, 3]], | |
[[5, 4, 3], | |
[5, 3, 6], | |
[4, 6, 3]]], | |
[[[3, 3, 4], | |
[3, 6, 6], | |
[3, 6, 5]], | |
[[6, 4, 5], | |
[4, 6, 5], | |
[3, 6, 6]], | |
[[5, 6, 3], | |
[3, 4, 3], | |
[5, 3, 4]]]], dtype=torch.int8) | |
TorchScript: | |
===== | |
four_d: | |
tensor([[[[ 3, 4, 4], | |
[ 3, 3, 6], | |
[ 4, 4, 4]], | |
[[ 4, 5, 4], | |
[ 5, 4, 6], | |
[ 5, 6, 5]], | |
[[ 3, 3, 6], | |
[ 6, 3, 5], | |
[ 3, 5, 6]]], | |
[[[ 4, 5, 3], | |
[ 4, 4, 3], | |
[ 3, 6, 5]], | |
[[ 5, 6, 3], | |
[ 3, 5, 6], | |
[ 5, 4, 3]], | |
[[ 5, 4, 3], | |
[ 5, 3, 6], | |
[ 4, 6, 3]]], | |
[[[ 3, 3, 4], | |
[ 3, 6, 6], | |
[ 3, 6, 5]], | |
[[ 6, 4, 5], | |
[ 4, 6, 5], | |
[ 3, 6, 6]], | |
[[ 5, 6, 3], | |
[ 3, 4, 3], | |
[ 5, 3, 4]]]]) | |
[ CPUCharType{3,3,3,3} ] | |
------------------------------------------------------------------- | |
Eager: | |
===== | |
one_d: | |
tensor([3, 0, 0], dtype=torch.int16) | |
TorchScript: | |
===== | |
one_d: | |
tensor([ 3, 0, 0]) | |
[ CPUShortType{3} ] | |
Eager: | |
===== | |
two_d: | |
tensor([[2, 2], | |
[2, 4]], dtype=torch.int16) | |
TorchScript: | |
===== | |
two_d: | |
tensor([[ 2, 2], | |
[ 2, 4]]) | |
[ CPUShortType{2,2} ] | |
Eager: | |
===== | |
three_d: | |
tensor([[[2, 2], | |
[1, 1]], | |
[[2, 2], | |
[2, 1]]], dtype=torch.int16) | |
TorchScript: | |
===== | |
three_d: | |
tensor([[[ 2, 2], | |
[ 1, 1]], | |
[[ 2, 2], | |
[ 2, 1]]]) | |
[ CPUShortType{2,2,2} ] | |
Eager: | |
===== | |
four_d: | |
tensor([[[[6, 6, 4], | |
[4, 5, 6], | |
[5, 4, 5]], | |
[[4, 4, 3], | |
[5, 5, 5], | |
[3, 4, 6]], | |
[[5, 4, 5], | |
[5, 3, 4], | |
[3, 4, 5]]], | |
[[[3, 5, 3], | |
[5, 3, 4], | |
[3, 3, 4]], | |
[[3, 5, 3], | |
[4, 4, 3], | |
[4, 5, 3]], | |
[[3, 6, 4], | |
[3, 4, 3], | |
[3, 5, 4]]], | |
[[[5, 4, 3], | |
[5, 6, 5], | |
[4, 5, 4]], | |
[[4, 4, 5], | |
[6, 3, 5], | |
[6, 5, 3]], | |
[[6, 3, 3], | |
[3, 3, 3], | |
[6, 4, 6]]]], dtype=torch.int16) | |
TorchScript: | |
===== | |
four_d: | |
tensor([[[[ 6, 6, 4], | |
[ 4, 5, 6], | |
[ 5, 4, 5]], | |
[[ 4, 4, 3], | |
[ 5, 5, 5], | |
[ 3, 4, 6]], | |
[[ 5, 4, 5], | |
[ 5, 3, 4], | |
[ 3, 4, 5]]], | |
[[[ 3, 5, 3], | |
[ 5, 3, 4], | |
[ 3, 3, 4]], | |
[[ 3, 5, 3], | |
[ 4, 4, 3], | |
[ 4, 5, 3]], | |
[[ 3, 6, 4], | |
[ 3, 4, 3], | |
[ 3, 5, 4]]], | |
[[[ 5, 4, 3], | |
[ 5, 6, 5], | |
[ 4, 5, 4]], | |
[[ 4, 4, 5], | |
[ 6, 3, 5], | |
[ 6, 5, 3]], | |
[[ 6, 3, 3], | |
[ 3, 3, 3], | |
[ 6, 4, 6]]]]) | |
[ CPUShortType{3,3,3,3} ] | |
------------------------------------------------------------------- | |
Eager: | |
===== | |
one_d: | |
tensor([2, 2, 3], dtype=torch.int32) | |
TorchScript: | |
===== | |
one_d: | |
tensor([ 2, 2, 3]) | |
[ CPUIntType{3} ] | |
Eager: | |
===== | |
two_d: | |
tensor([[2, 2], | |
[2, 2]], dtype=torch.int32) | |
TorchScript: | |
===== | |
two_d: | |
tensor([[ 2, 2], | |
[ 2, 2]]) | |
[ CPUIntType{2,2} ] | |
Eager: | |
===== | |
three_d: | |
tensor([[[1, 2], | |
[1, 2]], | |
[[1, 1], | |
[2, 1]]], dtype=torch.int32) | |
TorchScript: | |
===== | |
three_d: | |
tensor([[[ 1, 2], | |
[ 1, 2]], | |
[[ 1, 1], | |
[ 2, 1]]]) | |
[ CPUIntType{2,2,2} ] | |
Eager: | |
===== | |
four_d: | |
tensor([[[[3, 6, 4], | |
[6, 6, 6], | |
[5, 6, 5]], | |
[[5, 5, 4], | |
[4, 4, 6], | |
[5, 5, 5]], | |
[[4, 6, 4], | |
[4, 6, 5], | |
[4, 5, 3]]], | |
[[[6, 6, 5], | |
[3, 4, 4], | |
[4, 3, 3]], | |
[[6, 6, 4], | |
[6, 4, 5], | |
[5, 5, 4]], | |
[[6, 3, 6], | |
[5, 6, 6], | |
[5, 4, 3]]], | |
[[[6, 6, 6], | |
[5, 5, 5], | |
[3, 6, 5]], | |
[[6, 6, 6], | |
[4, 3, 5], | |
[3, 6, 4]], | |
[[4, 5, 4], | |
[5, 6, 3], | |
[3, 6, 6]]]], dtype=torch.int32) | |
TorchScript: | |
===== | |
four_d: | |
tensor([[[[ 3, 6, 4], | |
[ 6, 6, 6], | |
[ 5, 6, 5]], | |
[[ 5, 5, 4], | |
[ 4, 4, 6], | |
[ 5, 5, 5]], | |
[[ 4, 6, 4], | |
[ 4, 6, 5], | |
[ 4, 5, 3]]], | |
[[[ 6, 6, 5], | |
[ 3, 4, 4], | |
[ 4, 3, 3]], | |
[[ 6, 6, 4], | |
[ 6, 4, 5], | |
[ 5, 5, 4]], | |
[[ 6, 3, 6], | |
[ 5, 6, 6], | |
[ 5, 4, 3]]], | |
[[[ 6, 6, 6], | |
[ 5, 5, 5], | |
[ 3, 6, 5]], | |
[[ 6, 6, 6], | |
[ 4, 3, 5], | |
[ 3, 6, 4]], | |
[[ 4, 5, 4], | |
[ 5, 6, 3], | |
[ 3, 6, 6]]]]) | |
[ CPUIntType{3,3,3,3} ] | |
------------------------------------------------------------------- | |
Eager: | |
===== | |
one_d: | |
tensor([0, 0, 2]) | |
TorchScript: | |
===== | |
one_d: | |
tensor([ 0, 0, 2]) | |
[ CPULongType{3} ] | |
Eager: | |
===== | |
two_d: | |
tensor([[4, 2], | |
[2, 3]]) | |
TorchScript: | |
===== | |
two_d: | |
tensor([[ 4, 2], | |
[ 2, 3]]) | |
[ CPULongType{2,2} ] | |
Eager: | |
===== | |
three_d: | |
tensor([[[2, 2], | |
[1, 2]], | |
[[2, 2], | |
[1, 2]]]) | |
TorchScript: | |
===== | |
three_d: | |
tensor([[[ 2, 2], | |
[ 1, 2]], | |
[[ 2, 2], | |
[ 1, 2]]]) | |
[ CPULongType{2,2,2} ] | |
Eager: | |
===== | |
four_d: | |
tensor([[[[3, 4, 4], | |
[4, 5, 4], | |
[4, 6, 4]], | |
[[4, 6, 5], | |
[4, 6, 3], | |
[6, 5, 4]], | |
[[3, 4, 6], | |
[6, 4, 4], | |
[5, 3, 5]]], | |
[[[6, 5, 4], | |
[5, 5, 5], | |
[3, 6, 6]], | |
[[5, 3, 3], | |
[4, 3, 4], | |
[5, 3, 3]], | |
[[3, 6, 3], | |
[5, 6, 3], | |
[6, 4, 4]]], | |
[[[6, 5, 4], | |
[3, 4, 3], | |
[3, 4, 6]], | |
[[4, 3, 3], | |
[4, 5, 3], | |
[5, 3, 5]], | |
[[5, 5, 4], | |
[5, 4, 6], | |
[6, 3, 4]]]]) | |
TorchScript: | |
===== | |
four_d: | |
tensor([[[[ 3, 4, 4], | |
[ 4, 5, 4], | |
[ 4, 6, 4]], | |
[[ 4, 6, 5], | |
[ 4, 6, 3], | |
[ 6, 5, 4]], | |
[[ 3, 4, 6], | |
[ 6, 4, 4], | |
[ 5, 3, 5]]], | |
[[[ 6, 5, 4], | |
[ 5, 5, 5], | |
[ 3, 6, 6]], | |
[[ 5, 3, 3], | |
[ 4, 3, 4], | |
[ 5, 3, 3]], | |
[[ 3, 6, 3], | |
[ 5, 6, 3], | |
[ 6, 4, 4]]], | |
[[[ 6, 5, 4], | |
[ 3, 4, 3], | |
[ 3, 4, 6]], | |
[[ 4, 3, 3], | |
[ 4, 5, 3], | |
[ 5, 3, 5]], | |
[[ 5, 5, 4], | |
[ 5, 4, 6], | |
[ 6, 3, 4]]]]) | |
[ CPULongType{3,3,3,3} ] | |
------------------------------------------------------------------- | |
End------------> all_int_dtypes | |
Start------------> all_fp_dtypes | |
Eager: | |
===== | |
Eager one_d: | |
tensor([0.8862, 0.6374, 0.5895, 0.4836]) | |
TorchScript: | |
===== | |
TorchScript one_d: | |
tensor([ 0.8862, 0.6374, 0.5895, 0.4836]) | |
[ CPUFloatType{4} ] | |
Eager: | |
===== | |
Eager two_d: | |
tensor([[0.7447, 0.6302, 0.3191, 0.4868, 0.1060], | |
[0.5758, 0.0270, 0.3764, 0.9104, 0.7007]]) | |
TorchScript: | |
===== | |
TorchScript two_d: | |
tensor([[ 0.7447, 0.6302, 0.3191, 0.4868, 0.1060], | |
[ 0.5758, 0.0270, 0.3764, 0.9104, 0.7007]]) | |
[ CPUFloatType{2,5} ] | |
Eager: | |
===== | |
Eager three_d: | |
tensor([[[0.3013, 0.8141, 0.4720, 0.1424, 0.9305], | |
[0.2058, 0.5577, 0.9546, 0.0137, 0.6347], | |
[0.0715, 0.6876, 0.7069, 0.2962, 0.7511]]]) | |
TorchScript: | |
===== | |
TorchScript three_d: | |
tensor([[[ 0.3013, 0.8141, 0.4720, 0.1424, 0.9305], | |
[ 0.2058, 0.5577, 0.9546, 0.0137, 0.6347], | |
[ 0.0715, 0.6876, 0.7069, 0.2962, 0.7511]]]) | |
[ CPUFloatType{1,3,5} ] | |
Eager: | |
===== | |
TorchScript: | |
===== | |
Eager four_d: | |
tensor([[[[0.8764, 0.1956, 0.5063, 0.1208], | |
[0.0147, 0.1540, 0.1596, 0.5032], | |
[0.7086, 0.7997, 0.9963, 0.7269]], | |
[[0.3030, 0.5717, 0.6340, 0.8958], | |
[0.6083, 0.3048, 0.0234, 0.8670], | |
[0.9913, 0.4057, 0.7230, 0.0731]]]]) | |
TorchScript four_d: | |
tensor([[[[ 0.8764, 0.1956, 0.5063, 0.1208], | |
[ 0.0147, 0.1540, 0.1596, 0.5032], | |
[ 0.7086, 0.7997, 0.9963, 0.7269]], | |
[[ 0.3030, 0.5717, 0.6340, 0.8958], | |
[ 0.6083, 0.3048, 0.0234, 0.8670], | |
[ 0.9913, 0.4057, 0.7230, 0.0731]]]]) | |
[ CPUFloatType{1,2,3,4} ] | |
------------------------------------------------------------------- | |
Eager: | |
===== | |
Eager one_d: | |
tensor([0.0750, 0.2591, 0.1479, 0.8752], dtype=torch.float64) | |
TorchScript: | |
===== | |
TorchScript one_d: | |
tensor([ 0.0750, 0.2591, 0.1479, 0.8752]) | |
[ CPUDoubleType{4} ] | |
Eager: | |
===== | |
Eager two_d: | |
tensor([[0.2920, 0.4998, 0.8367, 0.7295, 0.7714], | |
[0.6530, 0.6883, 0.3495, 0.0512, 0.8327]], dtype=torch.float64) | |
TorchScript: | |
===== | |
TorchScript two_d: | |
tensor([[ 0.2920, 0.4998, 0.8367, 0.7295, 0.7714], | |
[ 0.6530, 0.6883, 0.3495, 0.0512, 0.8327]]) | |
[ CPUDoubleType{2,5} ] | |
Eager: | |
===== | |
Eager three_d: | |
tensor([[[0.0440, 0.0733, 0.9754, 0.9970, 0.8539], | |
[0.4797, 0.2951, 0.3387, 0.1441, 0.3260], | |
[0.7813, 0.2350, 0.3746, 0.8920, 0.9625]]], dtype=torch.float64) | |
TorchScript: | |
===== | |
TorchScript three_d: | |
tensor([[[ 0.0440, 0.0733, 0.9754, 0.9970, 0.8539], | |
[ 0.4797, 0.2951, 0.3387, 0.1441, 0.3260], | |
[ 0.7813, 0.2350, 0.3746, 0.8920, 0.9625]]]) | |
[ CPUDoubleType{1,3,5} ] | |
Eager: | |
===== | |
TorchScript: | |
===== | |
Eager four_d: | |
tensor([[[[0.3015, 0.0089, 0.9725, 0.4227], | |
[0.6755, 0.7912, 0.2659, 0.0508], | |
[0.3258, 0.7791, 0.6802, 0.9657]], | |
[[0.0207, 0.6678, 0.3000, 0.5074], | |
[0.2995, 0.2149, 0.3225, 0.2816], | |
[0.8775, 0.9692, 0.8431, 0.8633]]]], dtype=torch.float64) | |
TorchScript four_d: | |
tensor([[[[ 0.3015, 0.0089, 0.9725, 0.4227], | |
[ 0.6755, 0.7912, 0.2659, 0.0508], | |
[ 0.3258, 0.7791, 0.6802, 0.9657]], | |
[[ 0.0207, 0.6678, 0.3000, 0.5074], | |
[ 0.2995, 0.2149, 0.3225, 0.2816], | |
[ 0.8775, 0.9692, 0.8431, 0.8633]]]]) | |
[ CPUDoubleType{1,2,3,4} ] | |
------------------------------------------------------------------- | |
Eager: | |
===== | |
Eager one_d: | |
tensor([0.2559, 0.1602, 0.7837, 0.2524], dtype=torch.float16) | |
TorchScript: | |
===== | |
TorchScript one_d: | |
tensor([ 0.2559, 0.1602, 0.7837, 0.2524]) | |
[ CPUHalfType{4} ] | |
Eager: | |
===== | |
Eager two_d: | |
tensor([[0.0161, 0.2734, 0.5391, 0.9702, 0.9204], | |
[0.0752, 0.3149, 0.9150, 0.4385, 0.3818]], dtype=torch.float16) | |
TorchScript: | |
===== | |
TorchScript two_d: | |
tensor([[ 0.0161, 0.2734, 0.5391, 0.9702, 0.9204], | |
[ 0.0752, 0.3149, 0.9150, 0.4385, 0.3818]]) | |
[ CPUHalfType{2,5} ] | |
Eager: | |
===== | |
Eager three_d: | |
tensor([[[0.3042, 0.2334, 0.0874, 0.7773, 0.6895], | |
[0.6040, 0.1104, 0.3315, 0.9590, 0.9683], | |
[0.7227, 0.1987, 0.7422, 0.0474, 0.7676]]], dtype=torch.float16) | |
TorchScript: | |
===== | |
TorchScript three_d: | |
tensor([[[ 0.3042, 0.2334, 0.0874, 0.7773, 0.6895], | |
[ 0.6040, 0.1104, 0.3315, 0.9590, 0.9683], | |
[ 0.7227, 0.1987, 0.7422, 0.0474, 0.7676]]]) | |
[ CPUHalfType{1,3,5} ] | |
Eager: | |
===== | |
TorchScript: | |
===== | |
Eager four_d: | |
tensor([[[[0.4927, 0.5718, 0.7095, 0.8052], | |
[0.3682, 0.4893, 0.0215, 0.6582], | |
[0.3120, 0.2988, 0.7896, 0.8662]], | |
[[0.7812, 0.4932, 0.9380, 0.5259], | |
[0.5703, 0.3125, 0.0415, 0.2192], | |
[0.0645, 0.5864, 0.3037, 0.8804]]]], dtype=torch.float16) | |
TorchScript four_d: | |
tensor([[[[ 0.4927, 0.5718, 0.7095, 0.8052], | |
[ 0.3682, 0.4893, 0.0215, 0.6582], | |
[ 0.3120, 0.2988, 0.7896, 0.8662]], | |
[[ 0.7812, 0.4932, 0.9380, 0.5259], | |
[ 0.5703, 0.3125, 0.0415, 0.2192], | |
[ 0.0645, 0.5864, 0.3037, 0.8804]]]]) | |
[ CPUHalfType{1,2,3,4} ] | |
------------------------------------------------------------------- | |
Eager: | |
===== | |
Eager one_d: | |
tensor([0.3203, 0.3438, 0.3438, 0.0273], dtype=torch.bfloat16) | |
TorchScript: | |
===== | |
TorchScript one_d: | |
tensor([ 0.3203, 0.3438, 0.3438, 0.0273]) | |
[ CPUBFloat16Type{4} ] | |
Eager: | |
===== | |
Eager two_d: | |
tensor([[0.0508, 0.9922, 0.1133, 0.9102, 0.1797], | |
[0.8594, 0.4766, 0.8477, 0.3125, 0.3750]], dtype=torch.bfloat16) | |
TorchScript: | |
===== | |
TorchScript two_d: | |
tensor([[ 0.0508, 0.9922, 0.1133, 0.9102, 0.1797], | |
[ 0.8594, 0.4766, 0.8477, 0.3125, 0.3750]]) | |
[ CPUBFloat16Type{2,5} ] | |
Eager: | |
===== | |
Eager three_d: | |
tensor([[[0.9844, 0.4766, 0.8906, 0.3945, 0.7227], | |
[0.6016, 0.7227, 0.8789, 0.8906, 0.3438], | |
[0.0742, 0.5586, 0.0000, 0.3125, 0.1523]]], dtype=torch.bfloat16) | |
TorchScript: | |
===== | |
TorchScript three_d: | |
tensor([[[ 0.9844, 0.4766, 0.8906, 0.3945, 0.7227], | |
[ 0.6016, 0.7227, 0.8789, 0.8906, 0.3438], | |
[ 0.0742, 0.5586, 0.0000, 0.3125, 0.1523]]]) | |
[ CPUBFloat16Type{1,3,5} ] | |
Eager: | |
===== | |
TorchScript: | |
===== | |
Eager four_d: | |
tensor([[[[0.8008, 0.1719, 0.3672, 0.0781], | |
[0.6367, 0.1875, 0.0469, 0.5117], | |
[0.2578, 0.9609, 0.5703, 0.8203]], | |
[[0.8008, 0.7695, 0.3359, 0.8633], | |
[0.1875, 0.2031, 0.9219, 0.8633], | |
[0.3164, 0.0742, 0.1016, 0.0977]]]], dtype=torch.bfloat16) | |
TorchScript four_d: | |
tensor([[[[ 0.8008, 0.1719, 0.3672, 0.0781], | |
[ 0.6367, 0.1875, 0.0469, 0.5117], | |
[ 0.2578, 0.9609, 0.5703, 0.8203]], | |
[[ 0.8008, 0.7695, 0.3359, 0.8633], | |
[ 0.1875, 0.2031, 0.9219, 0.8633], | |
[ 0.3164, 0.0742, 0.1016, 0.0977]]]]) | |
[ CPUBFloat16Type{1,2,3,4} ] | |
------------------------------------------------------------------- | |
Eager: | |
===== | |
one_d: | |
tensor([0.4078+0.1507j, 0.2374+0.5789j, 0.6729+0.9506j, 0.3730+0.2517j], | |
dtype=torch.complex128) | |
TorchScript: | |
===== | |
one_d: | |
tensor([ 0.4078, 0.2374, 0.6729, 0.3730]) | |
[ CPUComplexDoubleType{4} ] | |
Eager: | |
===== | |
two_d: | |
tensor([[0.6952+0.4326j, 0.6554+0.8845j, 0.5624+0.7947j, 0.5934+0.2842j, | |
0.7831+0.5603j], | |
[0.2269+0.5127j, 0.1438+0.4418j, 0.3071+0.5625j, 0.8339+0.0586j, | |
0.1310+0.6380j]], dtype=torch.complex128) | |
TorchScript: | |
===== | |
two_d: | |
tensor([[ 0.6952, 0.6554, 0.5624, 0.5934, 0.7831], | |
[ 0.2269, 0.1438, 0.3071, 0.8339, 0.1310]]) | |
[ CPUComplexDoubleType{2,5} ] | |
Eager: | |
===== | |
three_d: | |
tensor([[[0.4554+0.8411j, 0.5804+0.0306j, 0.7246+0.2556j, 0.9033+0.0010j, | |
0.4620+0.2163j], | |
[0.1318+0.8564j, 0.2276+0.5338j, 0.9912+0.6022j, 0.9679+0.6979j, | |
0.1361+0.1670j], | |
[0.2906+0.1830j, 0.4380+0.8863j, 0.8733+0.0768j, 0.7432+0.5442j, | |
0.6892+0.4287j]]], dtype=torch.complex128) | |
TorchScript: | |
===== | |
three_d: | |
tensor([[[ 0.4554, 0.5804, 0.7246, 0.9033, 0.4620], | |
[ 0.1318, 0.2276, 0.9912, 0.9679, 0.1361], | |
[ 0.2906, 0.4380, 0.8733, 0.7432, 0.6892]]]) | |
[ CPUComplexDoubleType{1,3,5} ] | |
------------------------------------------------------------------- | |
Eager: | |
===== | |
one_d: | |
tensor([True, True]) | |
TorchScript: | |
===== | |
one_d: | |
tensor([ 1, 1]) | |
[ CPUBoolType{2} ] | |
Eager: | |
===== | |
two_d: | |
tensor([[True, True], | |
[True, True], | |
[True, True], | |
[True, True]]) | |
three_d: | |
tensor([[[True, True], | |
[True, True]], | |
[[True, True], | |
[True, True]]]) | |
four_d: | |
tensor([[True, True], | |
[True, True], | |
[True, True], | |
[True, True], | |
[True, True]]) | |
------------------------------------------------------------------- | |
two_d: | |
tensor([[ 1, 1], | |
[ 1, 1], | |
[ 1, 1], | |
[ 1, 1]]) | |
[ CPUBoolType{4,2} ] | |
three_d: | |
tensor([[[ 1, 1], | |
[ 1, 1]], | |
[[ 1, 1], | |
[ 1, 1]]]) | |
[ CPUBoolType{2,2,2} ] | |
four_d: | |
tensor([[ 1, 1], | |
[ 1, 1], | |
[ 1, 1], | |
[ 1, 1], | |
[ 1, 1]]) | |
[ CPUBoolType{5,2} ] | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment