Last active
March 11, 2019 08:18
-
-
Save gautamsreekumar/81bf1ad1037ccfc5dfa8da1be28f2216 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def initi(var_shape): | |
real_part = nprand.rand(var_shape[0], var_shape[1], var_shape[2], var_shape[3]) | |
imag_part = nprand.rand(var_shape[0], var_shape[1], var_shape[2], var_shape[3]) | |
return tf.constant_initializer(real_part + imag_part*1.0j) | |
def lrelu(tensor_in): # this is not leaky-relu | |
temp_real = tf.real(tensor_in) | |
temp_imag = tf.imag(tensor_in) | |
return tf.complex(temp_real, temp_imag) | |
learning_rate = 0.01 | |
# training networks | |
# Input and target placeholders for training | |
inputs_train_64 = tf.placeholder(tf.float64, (None, tr_img_size, tr_img_size, channels), name="inputs_train_64") | |
inputs_train = tf.image.resize_images(inputs_train_64, size=[256, 256]) | |
targets_train = tf.placeholder(tf.complex128, (None, 256, 256, 2), name="targets_train") | |
w1_shape = [2, 2, channels, 64] | |
w2_shape = [2, 2, 64, 128] | |
w3_shape = [2, 2, 128, 256] | |
w4_shape = [2, 2, 256, 512] | |
w1 = tf.get_variable(name='w1', shape=w1_shape, dtype=tf.float32, initializer=tf.truncated_normal_initializer) # [h x w x in_c x out_c] | |
w2 = tf.get_variable(name='w2', shape=w2_shape, dtype=tf.complex128, initializer=initi(w2_shape)) # [h x w x in_c x out_c] | |
w3 = tf.get_variable(name='w3', shape=w3_shape, dtype=tf.complex128, initializer=initi(w3_shape)) # [h x w x in_c x out_c] | |
w4 = tf.get_variable(name='w4', shape=w4_shape, dtype=tf.complex128, initializer=initi(w4_shape)) # [h x w x in_c x out_c] | |
conv1 = tf.nn.conv2d(input=inputs_train, filter=w1, strides=[1,2,2,1], padding='VALID') | |
conv1 = tf.complex(tf.cast(conv1, tf.float64), tf.cast(0.0, tf.float64)) | |
conv2 = tf.nn.conv2d(input=lrelu(conv1), filter=w2, strides=[1,2,2,1], padding='VALID') | |
conv3 = tf.nn.conv2d(input=lrelu(conv2), filter=w3, strides=[1,2,2,1], padding='VALID') | |
encoded = tf.nn.conv2d(input=lrelu(conv3), filter=w4, strides=[1,2,2,1], padding='VALID') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment