Created
September 13, 2015 10:17
-
-
Save gavinwhyte/f31a39382889021618eb to your computer and use it in GitHub Desktop.
Knn
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
__author__ = 'gavinwhyte' | |
from numpy import * | |
import operator | |
import matplotlib | |
import matplotlib.pyplot as plt | |
def createDataSet(): | |
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) | |
labels = ['A', 'A', 'B', 'B'] | |
return group, labels | |
#group,labels = createDataSet() | |
#print group | |
#print labels | |
def classify0(inX, dataSet, labels,k): | |
dataSetSize = dataSet.shape[0] | |
diffMat = tile(inX, (dataSetSize,1)) - dataSet | |
sqDiffMat = diffMat ** 2 | |
sqDistances = sqDiffMat.sum(axis=1) | |
distances = sqDistances**0.5 | |
sortedDistIndices = distances.argsort() | |
classCount ={} | |
for i in range(k): | |
voteIlabel = labels[sortedDistIndices[i]] | |
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 | |
sortedClassCount = sorted(classCount.iteritems(), | |
key=operator.itemgetter(1),reverse=True) | |
return sortedClassCount[0][0] | |
#results = classify0([0,0.1], group,labels,3) | |
#print results | |
def file2matrix(filename): | |
fr = open(filename) | |
arrayOLines = fr.readlines() | |
numberOfLines = len(arrayOLines) | |
returnMat = zeros((numberOfLines,3)) | |
classLabelVector = [] | |
fr = open(filename) | |
index = 0 | |
for line in arrayOLines: | |
line = line.strip() | |
listFromLine = line.split('\t') | |
returnMat[index,:] = listFromLine[0:3] | |
classLabelVector.append(int(listFromLine[-1])) | |
index += 1 | |
return returnMat, classLabelVector | |
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt') | |
print datingDataMat | |
print datingLabels | |
def autoNorm(dataSet): | |
minVals = dataSet.min(0) | |
maxVals = dataSet.max(0) | |
ranges = maxVals - minVals | |
normDataSet = zeros(shape(dataSet)) | |
m = dataSet.shape[0] | |
normDataSet = dataSet - tile(minVals, (m,1)) | |
normDataSet = normDataSet/tile(ranges, (m,1)) | |
return normDataSet, ranges, minVals | |
normMat, ranges, minVals = autoNorm(datingDataMat) | |
print normMat | |
print ranges | |
print minVals | |
def datingClassTest(): | |
hoRatio = 0.10 | |
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') | |
normMat, ranges, minVals = autoNorm(datingDataMat) | |
m = normMat.shape[0] | |
numTestVecs = int(m*hoRatio) | |
errorCount = 0.0 | |
for i in range(numTestVecs): | |
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],\ | |
datingLabels[numTestVecs:m],3) | |
print "the classifier came back with: %d, the real answer is: %d"\ | |
% (classifierResult, datingLabels[i]) | |
if (classifierResult != datingLabels[i]): errorCount += 1.0 | |
print "the total error rate is: %f" % (errorCount/float(numTestVecs)) | |
def classifyPerson(): | |
resultList = ['not at all','in small doses', 'in large doses'] | |
percentTats = 10 | |
ffMiles = 10000 | |
iceCream = 0.5 | |
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') | |
normMat, ranges, minVals = autoNorm(datingDataMat) | |
inArr = array([ffMiles, percentTats, iceCream]) | |
classifierResult = classify0((inArr-\ | |
minVals)/ranges,normMat,datingLabels,3) | |
print "You will probably like this person: ",\ | |
resultList[classifierResult - 1] | |
datingClassTest() | |
classifyPerson() | |
fig = plt.figure() | |
ax = fig.add_subplot(111) | |
ax.scatter(datingDataMat[:,1], datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels)) | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment