Skip to content

Instantly share code, notes, and snippets.

@gavinwhyte
Created September 13, 2015 10:17
Show Gist options
  • Save gavinwhyte/f31a39382889021618eb to your computer and use it in GitHub Desktop.
Save gavinwhyte/f31a39382889021618eb to your computer and use it in GitHub Desktop.
Knn
__author__ = 'gavinwhyte'
from numpy import *
import operator
import matplotlib
import matplotlib.pyplot as plt
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
#group,labels = createDataSet()
#print group
#print labels
def classify0(inX, dataSet, labels,k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndices = distances.argsort()
classCount ={}
for i in range(k):
voteIlabel = labels[sortedDistIndices[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(),
key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
#results = classify0([0,0.1], group,labels,3)
#print results
def file2matrix(filename):
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
returnMat = zeros((numberOfLines,3))
classLabelVector = []
fr = open(filename)
index = 0
for line in arrayOLines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat, classLabelVector
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
print datingDataMat
print datingLabels
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet, ranges, minVals
normMat, ranges, minVals = autoNorm(datingDataMat)
print normMat
print ranges
print minVals
def datingClassTest():
hoRatio = 0.10
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],\
datingLabels[numTestVecs:m],3)
print "the classifier came back with: %d, the real answer is: %d"\
% (classifierResult, datingLabels[i])
if (classifierResult != datingLabels[i]): errorCount += 1.0
print "the total error rate is: %f" % (errorCount/float(numTestVecs))
def classifyPerson():
resultList = ['not at all','in small doses', 'in large doses']
percentTats = 10
ffMiles = 10000
iceCream = 0.5
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percentTats, iceCream])
classifierResult = classify0((inArr-\
minVals)/ranges,normMat,datingLabels,3)
print "You will probably like this person: ",\
resultList[classifierResult - 1]
datingClassTest()
classifyPerson()
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1], datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment