Last active
October 9, 2017 22:51
-
-
Save gbraccialli/b98becb17a04042d802e5828bc1254a3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import org.apache.spark.sql.functions._ | |
val df = spark | |
.read | |
.option("inferSchema", "true") | |
.option("header", "true") | |
.option("delimiter", ";") | |
.csv("/Users/guilherme.braccialli/Desktop/simulado_1000_20k.csv") | |
val Array(dfTrain, dfTest) = df.randomSplit(Array(0.7, 0.3), seed=3) | |
dfTrain.cache | |
dfTest.cache | |
//check counts | |
println("train count=" + dfTrain.count) | |
println("test count=" + dfTest.count) | |
import org.apache.spark.sql.DataFrame | |
import org.apache.spark.sql.types._ | |
def categVars(dfTrain: DataFrame, dfTest: DataFrame, idColumn: String, labelColumn: String, parallelism: Integer) = { | |
var parColumns = dfTrain | |
.schema | |
.fields | |
.filter(field => !(field.name.toLowerCase == idColumn.toLowerCase || field.name.toLowerCase == labelColumn.toLowerCase)) | |
.map{field => (field.name, | |
field.dataType match { | |
case StringType => false | |
case _ => true | |
} | |
) | |
} | |
.par | |
import scala.collection.parallel._ | |
parColumns.tasksupport = new ForkJoinTaskSupport(new scala.concurrent.forkjoin.ForkJoinPool(parallelism)) | |
val outCateg = parColumns | |
.map{case (fieldName, dataType) => trainTreeAndReturnCategorical(dfTrain, dfTest, idColumn, labelColumn, fieldName, dataType)} | |
val dfSummary = outCateg.map(r => (r._1, r._2, r._3)).seq.toSeq.toDF("column", "AUCTrain", "AUCTest") | |
val dfTrainDiscretized = outCateg.map(r => r._4).foldLeft(dfTrain.select(idColumn, labelColumn))((buffer,element) => buffer.join(element, Seq(idColumn))) | |
val dfTestDiscretized = outCateg.map(r => r._5).foldLeft(dfTest.select(idColumn, labelColumn))((buffer,element) => buffer.join(element, Seq(idColumn))) | |
(dfSummary,dfTrainDiscretized,dfTestDiscretized) | |
} | |
def trainTreeAndReturnCategorical(dfTrain: DataFrame, dfTest: DataFrame, idColumn: String, labelColumn: String, columnToDiscretize: String, isNumeric: Boolean): (String, Double, Double, DataFrame, DataFrame) = { | |
println("processing field: " + columnToDiscretize) | |
import org.apache.spark.ml.feature.{StringIndexer,OneHotEncoder,VectorAssembler,VectorIndexer} | |
import org.apache.spark.sql.DataFrame | |
import org.apache.spark.ml._ | |
import org.apache.spark.ml.feature._ | |
import org.apache.spark.ml.classification._ | |
import org.apache.spark.ml.evaluation._ | |
import org.apache.spark.sql.functions.udf | |
val dfTrainCol = dfTrain.select(col(idColumn), col(labelColumn), coalesce(col(columnToDiscretize), if (isNumeric) lit(-3333333) else lit("__null__")).as(columnToDiscretize)) | |
val dfTestCol = dfTest.select(col(idColumn), col(labelColumn), coalesce(col(columnToDiscretize), if (isNumeric) lit(-3333333) else lit("__null__")).as(columnToDiscretize)) | |
val catIndex = new StringIndexer().setInputCol(columnToDiscretize).setOutputCol(columnToDiscretize + "_index").setHandleInvalid("keep") | |
val labelIndexer = new StringIndexer().setInputCol(labelColumn).setOutputCol("label") | |
val features = new VectorAssembler() | |
.setInputCols(Array(if (isNumeric) columnToDiscretize else columnToDiscretize + "_index")) | |
.setOutputCol("features") | |
val model = new DecisionTreeClassifier() | |
val pipeline = new Pipeline().setStages( | |
( | |
if (isNumeric) | |
Array(features) | |
else | |
Array(catIndex, features) | |
) | |
:+ labelIndexer :+ model | |
) | |
val fit = pipeline.fit(dfTrainCol) | |
val resultTrain = fit.transform(dfTrainCol) | |
val AUCTrain = new BinaryClassificationEvaluator().evaluate(resultTrain) | |
val resultTest = fit.transform(dfTestCol) | |
val AUCTest = new BinaryClassificationEvaluator().evaluate(resultTest) | |
val getVectorElement = udf((vector: org.apache.spark.ml.linalg.Vector, element: Integer) => vector(element)) | |
( | |
columnToDiscretize, | |
AUCTrain, | |
AUCTest, | |
resultTrain.select(col(idColumn),getVectorElement(col("probability"), lit(0)).as(columnToDiscretize)), | |
resultTest.select(col(idColumn),getVectorElement(col("probability"), lit(0)).as(columnToDiscretize)) | |
) | |
} | |
val (summary, dfTrainD, dfTestD) = categVars(dfTrain, dfTest, "key", "y", 5) | |
summary.show | |
dfTrainD.show | |
dfTestD.show | |
val cols = dfTrainD.columns.map(c => countDistinct(col(c)).as(c)) | |
display( | |
dfTrainD.agg(cols.head, cols.tail :_*).select(map(dfTrainD.columns.flatMap(c => Seq(lit(c), col(c))) :_*).as("all")).select(explode(col("all"))).withColumnRenamed("value", "number_distinct_values") | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment