Skip to content

Instantly share code, notes, and snippets.

@gciruelos
Last active February 17, 2020 01:18
Show Gist options
  • Save gciruelos/21f9c1dcbdee67d212319d75855544dc to your computer and use it in GitHub Desktop.
Save gciruelos/21f9c1dcbdee67d212319d75855544dc to your computer and use it in GitHub Desktop.
What is the roundest country?
'''
Post: http://gciruelos.com/what-is-the-roundest-country.html
Compute and create table of the roundness of all the countries.
Needs file ne_10m_admin_0_sovereignty.
'''
import base64
import io
import math
import operator
import random
import time
import urllib
import matplotlib.pyplot as plt
from PIL import Image
import rtree
import shapefile
from shapely.geometry import Polygon, Point
import pyproj
def slice_at(plist, indices):
'''
Slices the list ll at the indices indicated.
'''
indices.append(len(plist))
for fro, to in zip(indices, indices[1:]):
yield plist[fro:to]
def plot_country(name, parts, center, radius):
fig, ax = plt.subplots(figsize=(1.8, 1.8))
circle = plt.Circle(center, radius, color='k', fill=False)
for part in parts:
#color = random.choice('bgrcmk')
color = 'k'
for point1, point2 in zip(part, part[1:]):
ax.plot(
[point1[0], point2[0]],
[point1[1], point2[1]],
color+'-')
ax.add_artist(circle)
ax.set_aspect('equal', 'datalim')
imgdata = io.BytesIO()
#ax.set_title(name)
plt.axis('off')
#plt.savefig(name.lower().replace(' ', '-') + '.png', transparent=True)
#plt.show()
plt.savefig('tmp.png', format='png', transparent=True)
img = Image.open('tmp.png')
png_info = img.info
img.convert('P').save(imgdata, 'PNG', **png_info)
imgdata.seek(0)
plt.close(fig)
return imgdata
def neighbours(center, radius, delta):
cmov = delta
rmov = delta
cms = [cmov*20, cmov, 0, -cmov, -cmov*20]
rms = [rmov*20, rmov, 0, -rmov, -rmov*20]
for cx_mov in cms:
for cy_mov in cms:
for r_mov in rms:
if radius + r_mov > 0:
yield ((center[0] + cx_mov, center[1] + cy_mov),
radius + r_mov)
def maxmin(arr):
_max = arr[0]
_min = arr[0]
for x in arr:
if x > _max:
_max = x
elif x < _min:
_min = x
return _max, _min
def heuristic(polygons, index, c, r, delta, iters=200):
best_coeff = 0
parts_area = sum(map(lambda x: x.area, polygons))
is_ = 0
for _ in range(iters):
is_ += 1
mejoro = False
for c_, r_ in neighbours(c, r, delta):
circle = Point(c_).buffer(r_)
indices = range(len(polygons))
if circle.bounds != ():
indices = [int(i) for i in index.intersection(circle.bounds)]
else:
print('WARNING: circle.bounds == (). '\
'center = %s, radius = %.3f' % (str(c_), r_))
intersection_area = sum(
[polygons[i].intersection(circle).area for i in indices])
coeff = intersection_area / max(math.pi * r_ * r_, parts_area)
#print(c_, r_)
#print(intersection_area, circle_area, parts_area)
if coeff > best_coeff:
mejoro = True
c = c_
r = r_
best_coeff = coeff
if not mejoro:
break
return c, r, best_coeff, is_
def circle_inside(xmin, ymin, xmax, ymax):
center = [(xmin + xmax) / 2, (ymin + ymax) / 2]
radius = min((xmax - xmin) / 2, (ymax - ymin) / 2)
return center, radius
def circle_outside(xmin, ymin, xmax, ymax):
center = [(xmin + xmax) / 2, (ymin + ymax) / 2]
radius = math.sqrt((xmax - xmin)**2.0 + (ymax - ymin)**2.0) / 2
return center, radius
def analyze_both_circles(polys, index, min_x, min_y, max_x, max_y):
cinside, rinside = circle_inside(min_x, min_y, max_x, max_y)
coutside, routside = circle_outside(min_x, min_y, max_x, max_y)
c_i, r_i, best_i, iin = heuristic(
polys, index, cinside, rinside, rinside / 200)
print('[%d, ' % iin, end='', flush=True)
c_o, r_o, best_o, iout = heuristic(
polys, index, coutside, routside, routside / 200)
print('%d]' % iout)
best_coeff_ = max(best_i, best_o)
center_ = c_i if best_i > best_o else c_o
radius_ = r_i if best_i > best_o else r_o
return center_, radius_, best_coeff_
def find_best_circle(parts, minx, miny, maxx, maxy):
polys = [Polygon(part).buffer(0) for part in parts]
index = rtree.index.Index()
for i, poly in enumerate(polys):
index.insert(i, poly.bounds)
print('Analyzing best overall circle... Iterations: ', end='', flush=True)
c, r, best_coeff = analyze_both_circles(
polys, index, minx, miny, maxx, maxy)
best_polygons = []
if len(polys) > 1:
polygons_area = sorted(
[(poly, poly.area) for poly in polys],
key=lambda x: x[1], reverse=True)
areas = list(map(lambda r: r[1], polygons_area))
if areas[0] > sum(areas[1:]):
best_polygons = [polygons_area[0][0]]
else:
best_polygons = list(map(lambda x: x[0], polygons_area))[:5]
i = 0
for part in best_polygons:
if len(polys) == 1:
break
i += 1
print('Analyzing best part circle... (%d out of %d) Iterations: ' \
% (i, len(polys)), end='', flush=True)
x, y = part.exterior.coords.xy
max_x, min_x = maxmin(x)
max_y, min_y = maxmin(y)
center_, radius_, best_coeff_ = analyze_both_circles(
polys, index, min_x, min_y, max_x, max_y)
if best_coeff_ > best_coeff:
c = center_
r = radius_
best_coeff = best_coeff_
# fine tune it.
print('Fine-tuning the circle... Iterations: ', end='', flush=True)
c, r, best_coeff, iters = heuristic(polys, index, c, r, r / 1000, 1000)
print('[%d]' % iters)
return c, r, best_coeff
def tuple2list(t):
t = tuple(t)[0]
return [t[0], t[1]]
def concat(ls):
return [j for i in ls for j in i]
def mean(ls):
return float(sum(ls)) / len(ls)
INPUT_FILE = 'ne_10m_admin_0_sovereignty'
FROM_PROJ = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs'
def main():
countries = shapefile.Reader(INPUT_FILE).shapeRecords()
results = {}
for country in countries:
t0 = time.process_time()
name = country.record[8]
# if name != 'Nauru': continue
print('==== %s (%d -> %d) ====' % (
name, len(country.shape.parts), len(country.shape.points)))
points = list(map(lambda x: x, country.shape.points))
parts_ = list(country.shape.parts) + [len(country.shape.points)]
largest_part = (0, 1)
for x1, x2 in zip(parts_, parts_[1:]):
if x2 - x1 > largest_part[1] - largest_part[0]:
largest_part = (x1, x2)
print(parts_, largest_part)
# Get the random points from the largest part.
random_points = list(
map(
list,
random.sample(points[largest_part[0]:largest_part[1]], 2)))
# Get the middle points between them.
lon, lat = list(
pyproj.Geod(ellps='WGS84').npts(
random_points[0][0], random_points[0][1],
random_points[1][0], random_points[1][1],
1) # Just 1 point in-between them.
)[0]
to_proj = '+proj=aeqd +R=6371000 +lat_0=%.2f +lon_0=%.2f ' \
'+no_defs' % (lat, lon)
print('Projection: %s' % to_proj)
transform = lambda g: pyproj.transform(
pyproj.Proj(FROM_PROJ),
pyproj.Proj(to_proj),
g[0], g[1])
points = list(map(transform, points))
parts = list(slice_at(points, country.shape.parts))
max_xs, min_xs = maxmin(list(map(lambda t: t[0], points)))
max_ys, min_ys = maxmin(list(map(lambda t: t[1], points)))
center, radius, best_coeff = find_best_circle(
parts, min_xs, min_ys, max_xs, max_ys)
print('Time to compute roundness: %.3fs.' % (time.process_time() - t0))
print('Result info: %f (%.4f, %.4f) %.4f' \
% (best_coeff, center[0], center[1], radius))
uri = 'data:image/png;base64,' + urllib.parse.quote(
base64.b64encode(
plot_country(name, parts, center, radius).getvalue()))
print('Finished plotting %s.' % name)
results[name] = (best_coeff, '<img src="%s" />' % uri)
f = open('table', 'w')
# Does python use theorems for free?
# (https://www.mpi-sws.org/~dreyer/tor/papers/wadler.pdf)
f.write(
'\n'.join(
map(lambda s: ' | '.join(map(str, s)),
map(lambda r: [r[0]+1, r[1][0],
'%.3f' % r[1][1][0],
r[1][1][1]],
enumerate(
sorted(results.items(),
key=lambda z: (operator.itemgetter(1)(z))[0],
reverse=True))))))
f.close()
#cProfile.run('main()')
main()
@shrx
Copy link

shrx commented Jul 28, 2016

You should probably filter out stuff like "Serranilla Bank" so only real countries are considered.
Also, the Mauritius shape diagram is not very informative ;)

@janfreyberg
Copy link

I took your roundness results and they correlate nicely with absolute longitude (I used longitude of a country's capital!):

longitude-roundness

Note, this is absolute longitude, which is moving away from the prime meridian (through London / Eastern Spain / Western Africa). I think it's primarily driven by the small island nations in the pacific. Either way, I thought it was worth sharing. Thanks for the entertaining blogpost!

The code to that is here:
https://gist.github.com/janfreyberg/ad1fc26b89771c040eebb54c888b9e82

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment