Last active
August 8, 2021 04:14
-
-
Save gcusso/5d8393bf436e58d38ac84918b65b510d to your computer and use it in GitHub Desktop.
Extracted CordConvs tensorflow implementation from (An intriguing failing of convolutional neural networks and the CoordConv solution) https://arxiv.org/pdf/1807.03247.pdf
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow.python.layers import base | |
import tensorflow as tf | |
class AddCoords(base.Layer): | |
"""Add coords to a tensor""" | |
def __init__(self, x_dim=64, y_dim=64, with_r=False): | |
super(AddCoords, self).__init__() | |
self.x_dim = x_dim | |
self.y_dim = y_dim | |
self.with_r = with_r | |
def call(self, input_tensor): | |
""" | |
input_tensor: (batch, x_dim, y_dim, c) | |
""" | |
batch_size_tensor = tf.shape(input_tensor)[0] | |
xx_ones = tf.ones([batch_size_tensor, self.x_dim], dtype=tf.int32) | |
xx_ones = tf.expand_dims(xx_ones, -1) | |
xx_range = tf.tile(tf.expand_dims(tf.range(self.x_dim), 0), [batch_size_tensor, 1]) | |
xx_range = tf.expand_dims(xx_range, 1) | |
xx_channel = tf.matmul(xx_ones, xx_range) | |
xx_channel = tf.expand_dims(xx_channel, -1) | |
yy_ones = tf.ones([batch_size_tensor, self.y_dim], dtype=tf.int32) | |
yy_ones = tf.expand_dims(yy_ones, 1) | |
yy_range = tf.tile(tf.expand_dims(tf.range(self.y_dim), 0), [batch_size_tensor, 1]) | |
yy_range = tf.expand_dims(yy_range, -1) | |
yy_channel = tf.matmul(yy_range, yy_ones) | |
yy_channel = tf.expand_dims(yy_channel, -1) | |
xx_channel = tf.cast(xx_channel, 'float32') / (self.x_dim - 1) | |
yy_channel = tf.cast(yy_channel, 'float32') / (self.y_dim - 1) | |
xx_channel = xx_channel*2 - 1 | |
yy_channel = yy_channel*2 - 1 | |
ret = tf.concat([input_tensor, xx_channel, yy_channel], axis=-1) | |
if self.with_r: | |
rr = tf.sqrt( tf.square(xx_channel-0.5) + tf.square(yy_channel-0.5)) | |
ret = tf.concat([ret, rr], axis=-1) | |
return ret | |
class CoordConv(base.Layer): | |
"""CoordConv layer as in the paper.""" | |
def __init__(self, x_dim, y_dim, with_r, *args, **kwargs): | |
super(CoordConv, self).__init__() | |
self.addcoords = AddCoords(x_dim=x_dim, y_dim=y_dim, with_r=with_r) | |
self.conv = tf.layers.Conv2D(*args, **kwargs) | |
def call(self, input_tensor): | |
ret = self.addcoords(input_tensor) | |
ret = self.conv(ret) | |
return ret |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Example of usage:
Also as I understand
x_dim
,y_dim
size can be inferred from input tensor shape.