Skip to content

Instantly share code, notes, and snippets.

@gdshen
Created November 6, 2017 08:46
Show Gist options
  • Save gdshen/482c6d0a767901a2137112b7e7498375 to your computer and use it in GitHub Desktop.
Save gdshen/482c6d0a767901a2137112b7e7498375 to your computer and use it in GitHub Desktop.
IMDB-WIKI caffe model
name: "VGG_ILSVRC_16_layers"
layer {
top: "data"
type: "ImageData"
top: "label"
name: "data"
transform_param {
mirror: true
crop_size: 224
mean_file: "imagenet_mean.binaryproto"
}
image_data_param {
source: "train.txt"
batch_size: 10
new_height: 256
new_width: 256
}
include: { phase: TRAIN }
}
layer {
top: "data"
top: "label"
name: "data"
type: "ImageData"
image_data_param {
new_height: 256
new_width: 256
source: "train.txt"
batch_size: 10
}
transform_param {
crop_size: 224
mirror: false
mean_file: "imagenet_mean.binaryproto"
}
include: {
phase: TEST
stage: "test-on-train"
}
}
layer {
top: "data"
top: "label"
name: "data"
type: "ImageData"
image_data_param {
new_height: 256
new_width: 256
source: "test.txt"
batch_size: 10
}
transform_param {
crop_size: 224
mirror: false
mean_file: "imagenet_mean.binaryproto"
}
include: {
phase: TEST
stage: "test-on-test"
}
}
layer {
bottom: "data"
top: "conv1_1"
name: "conv1_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
type: "Convolution"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv1_1"
top: "conv1_1"
name: "relu1_1"
type: "ReLU"
}
layer {
bottom: "conv1_1"
top: "conv1_2"
name: "conv1_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
type: "Convolution"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv1_2"
top: "conv1_2"
name: "relu1_2"
type: "ReLU"
}
layer {
bottom: "conv1_2"
top: "pool1"
name: "pool1"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool1"
top: "conv2_1"
name: "conv2_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
type: "Convolution"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv2_1"
top: "conv2_1"
name: "relu2_1"
type: "ReLU"
}
layer {
bottom: "conv2_1"
top: "conv2_2"
name: "conv2_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
type: "Convolution"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv2_2"
top: "conv2_2"
name: "relu2_2"
type: "ReLU"
}
layer {
bottom: "conv2_2"
top: "pool2"
name: "pool2"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool2"
top: "conv3_1"
name: "conv3_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
type: "Convolution"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv3_1"
top: "conv3_1"
name: "relu3_1"
type: "ReLU"
}
layer {
bottom: "conv3_1"
top: "conv3_2"
name: "conv3_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
type: "Convolution"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv3_2"
top: "conv3_2"
name: "relu3_2"
type: "ReLU"
}
layer {
bottom: "conv3_2"
top: "conv3_3"
name: "conv3_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
type: "Convolution"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv3_3"
top: "conv3_3"
name: "relu3_3"
type: "ReLU"
}
layer {
bottom: "conv3_3"
top: "pool3"
name: "pool3"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool3"
top: "conv4_1"
name: "conv4_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv4_1"
top: "conv4_1"
name: "relu4_1"
type: "ReLU"
}
layer {
bottom: "conv4_1"
top: "conv4_2"
name: "conv4_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv4_2"
top: "conv4_2"
name: "relu4_2"
type: "ReLU"
}
layer {
bottom: "conv4_2"
top: "conv4_3"
name: "conv4_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv4_3"
top: "conv4_3"
name: "relu4_3"
type: "ReLU"
}
layer {
bottom: "conv4_3"
top: "pool4"
name: "pool4"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool4"
top: "conv5_1"
name: "conv5_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv5_1"
top: "conv5_1"
name: "relu5_1"
type: "ReLU"
}
layer {
bottom: "conv5_1"
top: "conv5_2"
name: "conv5_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv5_2"
top: "conv5_2"
name: "relu5_2"
type: "ReLU"
}
layer {
bottom: "conv5_2"
top: "conv5_3"
name: "conv5_3"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv5_3"
top: "conv5_3"
name: "relu5_3"
type: "ReLU"
}
layer {
bottom: "conv5_3"
top: "pool5"
name: "pool5"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool5"
top: "fc6"
name: "fc6"
param {
lr_mult: 10
decay_mult: 1
}
param {
lr_mult: 20
decay_mult: 0
}
type: "InnerProduct"
inner_product_param {
num_output: 4096
}
}
layer {
bottom: "fc6"
top: "fc6"
name: "relu6"
type: "ReLU"
}
layer {
bottom: "fc6"
top: "fc6"
name: "drop6"
type: "Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
bottom: "fc6"
top: "fc7"
name: "fc7"
param {
lr_mult: 10
decay_mult: 1
}
param {
lr_mult: 20
decay_mult: 0
}
type: "InnerProduct"
inner_product_param {
num_output: 4096
}
}
layer {
bottom: "fc7"
top: "fc7"
name: "relu7"
type: "ReLU"
}
layer {
bottom: "fc7"
top: "fc7"
name: "drop7"
type: "Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
bottom: "fc7"
top: "fc8-101"
name: "fc8-101"
param {
lr_mult: 10
decay_mult: 1
}
param {
lr_mult: 20
decay_mult: 0
}
type: "InnerProduct"
inner_product_param {
num_output: 101
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "fc8-101"
bottom: "label"
name: "loss"
type: "SoftmaxWithLoss"
include: { phase: TRAIN }
}
layer {
name: "prob"
type: "Softmax"
bottom: "fc8-101"
top: "prob"
include {
phase: TEST
}
}
layer {
name: "accuracy_train_top01"
type: "Accuracy"
bottom: "fc8-101"
bottom: "label"
top: "accuracy_train_top01"
include {
phase: TEST
stage: "test-on-train"
}
}
layer {
name: "accuracy_train_top05"
type: "Accuracy"
bottom: "fc8-101"
bottom: "label"
top: "accuracy_train_top05"
accuracy_param {
top_k: 5
}
include {
phase: TEST
stage: "test-on-train"
}
}
layer {
name: "accuracy_train_top10"
type: "Accuracy"
bottom: "fc8-101"
bottom: "label"
top: "accuracy_train_top10"
accuracy_param {
top_k: 10
}
include {
phase: TEST
stage: "test-on-train"
}
}
layer {
name: "accuracy_test_top01"
type: "Accuracy"
bottom: "fc8-101"
bottom: "label"
top: "accuracy_test_top01"
include {
phase: TEST
stage: "test-on-test"
}
}
layer {
name: "accuracy_test_top05"
type: "Accuracy"
bottom: "fc8-101"
bottom: "label"
top: "accuracy_test_top05"
accuracy_param {
top_k: 5
}
include {
phase: TEST
stage: "test-on-test"
}
}
layer {
name: "accuracy_test_top10"
type: "Accuracy"
bottom: "fc8-101"
bottom: "label"
top: "accuracy_test_top10"
accuracy_param {
top_k: 10
}
include {
phase: TEST
stage: "test-on-test"
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment