Created
November 6, 2017 08:46
-
-
Save gdshen/482c6d0a767901a2137112b7e7498375 to your computer and use it in GitHub Desktop.
IMDB-WIKI caffe model
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "VGG_ILSVRC_16_layers" | |
layer { | |
top: "data" | |
type: "ImageData" | |
top: "label" | |
name: "data" | |
transform_param { | |
mirror: true | |
crop_size: 224 | |
mean_file: "imagenet_mean.binaryproto" | |
} | |
image_data_param { | |
source: "train.txt" | |
batch_size: 10 | |
new_height: 256 | |
new_width: 256 | |
} | |
include: { phase: TRAIN } | |
} | |
layer { | |
top: "data" | |
top: "label" | |
name: "data" | |
type: "ImageData" | |
image_data_param { | |
new_height: 256 | |
new_width: 256 | |
source: "train.txt" | |
batch_size: 10 | |
} | |
transform_param { | |
crop_size: 224 | |
mirror: false | |
mean_file: "imagenet_mean.binaryproto" | |
} | |
include: { | |
phase: TEST | |
stage: "test-on-train" | |
} | |
} | |
layer { | |
top: "data" | |
top: "label" | |
name: "data" | |
type: "ImageData" | |
image_data_param { | |
new_height: 256 | |
new_width: 256 | |
source: "test.txt" | |
batch_size: 10 | |
} | |
transform_param { | |
crop_size: 224 | |
mirror: false | |
mean_file: "imagenet_mean.binaryproto" | |
} | |
include: { | |
phase: TEST | |
stage: "test-on-test" | |
} | |
} | |
layer { | |
bottom: "data" | |
top: "conv1_1" | |
name: "conv1_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv1_1" | |
top: "conv1_1" | |
name: "relu1_1" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv1_1" | |
top: "conv1_2" | |
name: "conv1_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv1_2" | |
top: "conv1_2" | |
name: "relu1_2" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv1_2" | |
top: "pool1" | |
name: "pool1" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool1" | |
top: "conv2_1" | |
name: "conv2_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv2_1" | |
top: "conv2_1" | |
name: "relu2_1" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv2_1" | |
top: "conv2_2" | |
name: "conv2_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv2_2" | |
top: "conv2_2" | |
name: "relu2_2" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv2_2" | |
top: "pool2" | |
name: "pool2" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool2" | |
top: "conv3_1" | |
name: "conv3_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv3_1" | |
top: "conv3_1" | |
name: "relu3_1" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv3_1" | |
top: "conv3_2" | |
name: "conv3_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv3_2" | |
top: "conv3_2" | |
name: "relu3_2" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv3_2" | |
top: "conv3_3" | |
name: "conv3_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv3_3" | |
top: "conv3_3" | |
name: "relu3_3" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv3_3" | |
top: "pool3" | |
name: "pool3" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool3" | |
top: "conv4_1" | |
name: "conv4_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv4_1" | |
top: "conv4_1" | |
name: "relu4_1" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv4_1" | |
top: "conv4_2" | |
name: "conv4_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv4_2" | |
top: "conv4_2" | |
name: "relu4_2" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv4_2" | |
top: "conv4_3" | |
name: "conv4_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv4_3" | |
top: "conv4_3" | |
name: "relu4_3" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv4_3" | |
top: "pool4" | |
name: "pool4" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool4" | |
top: "conv5_1" | |
name: "conv5_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv5_1" | |
top: "conv5_1" | |
name: "relu5_1" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv5_1" | |
top: "conv5_2" | |
name: "conv5_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv5_2" | |
top: "conv5_2" | |
name: "relu5_2" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv5_2" | |
top: "conv5_3" | |
name: "conv5_3" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
bottom: "conv5_3" | |
top: "conv5_3" | |
name: "relu5_3" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv5_3" | |
top: "pool5" | |
name: "pool5" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool5" | |
top: "fc6" | |
name: "fc6" | |
param { | |
lr_mult: 10 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 20 | |
decay_mult: 0 | |
} | |
type: "InnerProduct" | |
inner_product_param { | |
num_output: 4096 | |
} | |
} | |
layer { | |
bottom: "fc6" | |
top: "fc6" | |
name: "relu6" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "fc6" | |
top: "fc6" | |
name: "drop6" | |
type: "Dropout" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
bottom: "fc6" | |
top: "fc7" | |
name: "fc7" | |
param { | |
lr_mult: 10 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 20 | |
decay_mult: 0 | |
} | |
type: "InnerProduct" | |
inner_product_param { | |
num_output: 4096 | |
} | |
} | |
layer { | |
bottom: "fc7" | |
top: "fc7" | |
name: "relu7" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "fc7" | |
top: "fc7" | |
name: "drop7" | |
type: "Dropout" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
bottom: "fc7" | |
top: "fc8-101" | |
name: "fc8-101" | |
param { | |
lr_mult: 10 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 20 | |
decay_mult: 0 | |
} | |
type: "InnerProduct" | |
inner_product_param { | |
num_output: 101 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "fc8-101" | |
bottom: "label" | |
name: "loss" | |
type: "SoftmaxWithLoss" | |
include: { phase: TRAIN } | |
} | |
layer { | |
name: "prob" | |
type: "Softmax" | |
bottom: "fc8-101" | |
top: "prob" | |
include { | |
phase: TEST | |
} | |
} | |
layer { | |
name: "accuracy_train_top01" | |
type: "Accuracy" | |
bottom: "fc8-101" | |
bottom: "label" | |
top: "accuracy_train_top01" | |
include { | |
phase: TEST | |
stage: "test-on-train" | |
} | |
} | |
layer { | |
name: "accuracy_train_top05" | |
type: "Accuracy" | |
bottom: "fc8-101" | |
bottom: "label" | |
top: "accuracy_train_top05" | |
accuracy_param { | |
top_k: 5 | |
} | |
include { | |
phase: TEST | |
stage: "test-on-train" | |
} | |
} | |
layer { | |
name: "accuracy_train_top10" | |
type: "Accuracy" | |
bottom: "fc8-101" | |
bottom: "label" | |
top: "accuracy_train_top10" | |
accuracy_param { | |
top_k: 10 | |
} | |
include { | |
phase: TEST | |
stage: "test-on-train" | |
} | |
} | |
layer { | |
name: "accuracy_test_top01" | |
type: "Accuracy" | |
bottom: "fc8-101" | |
bottom: "label" | |
top: "accuracy_test_top01" | |
include { | |
phase: TEST | |
stage: "test-on-test" | |
} | |
} | |
layer { | |
name: "accuracy_test_top05" | |
type: "Accuracy" | |
bottom: "fc8-101" | |
bottom: "label" | |
top: "accuracy_test_top05" | |
accuracy_param { | |
top_k: 5 | |
} | |
include { | |
phase: TEST | |
stage: "test-on-test" | |
} | |
} | |
layer { | |
name: "accuracy_test_top10" | |
type: "Accuracy" | |
bottom: "fc8-101" | |
bottom: "label" | |
top: "accuracy_test_top10" | |
accuracy_param { | |
top_k: 10 | |
} | |
include { | |
phase: TEST | |
stage: "test-on-test" | |
} | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment