Last active
February 9, 2021 12:50
-
-
Save geblanco/a906dd1f3ccaaa123f9ca28793a30d64 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
5a6,8 | |
> import json | |
> | |
> import sklearn.metrics as metrics | |
6a10,11 | |
> from sklearn.metrics import precision_recall_curve | |
> from dvc.api import make_checkpoint | |
10c15 | |
< if len(sys.argv) != 3: | |
--- | |
> if len(sys.argv) != 4: | |
16a22,24 | |
> matrix_file = os.path.join(input, 'test.pkl') | |
> scores_file = sys.argv[3] | |
> | |
18a27 | |
> max_n_estimators = n_estimators * 4 | |
25a35,40 | |
> with open(matrix_file, 'rb') as fd: | |
> test_matrix = pickle.load(fd) | |
> | |
> test_labels = test_matrix[:, 1].toarray() | |
> test_x = test_matrix[:, 2:] | |
> | |
30,34c45,62 | |
< clf = RandomForestClassifier( | |
< n_estimators=n_estimators, | |
< n_jobs=2, | |
< random_state=seed | |
< ) | |
--- | |
> for n_est in range(n_estimators, max_n_estimators+1, 10): | |
> clf = RandomForestClassifier( | |
> n_estimators=n_est, | |
> n_jobs=2, | |
> random_state=seed | |
> ) | |
> | |
> clf.fit(x, labels) | |
> | |
> with open(output, 'wb') as fd: | |
> pickle.dump(clf, fd) | |
> | |
> predictions_by_class = clf.predict_proba(test_x) | |
> predictions = predictions_by_class[:, 1] | |
> | |
> precision, recall, thresholds = precision_recall_curve(test_labels, predictions) | |
> | |
> auc = metrics.auc(recall, precision) | |
36c64,65 | |
< clf.fit(x, labels) | |
--- | |
> with open(scores_file, 'w') as fd: | |
> yaml.dump({'auc': float(auc)}, fd) | |
38,39c67 | |
< with open(output, 'wb') as fd: | |
< pickle.dump(clf, fd) | |
--- | |
> make_checkpoint() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment