-
-
Save geekan/5966b805d4c2c70e5317093e7fc85634 to your computer and use it in GitHub Desktop.
Pairwise ranking using scikit-learn LinearSVC
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Implementation of pairwise ranking using scikit-learn LinearSVC | |
Reference: | |
"Large Margin Rank Boundaries for Ordinal Regression", R. Herbrich, | |
T. Graepel, K. Obermayer 1999 | |
"Learning to rank from medical imaging data." Pedregosa, Fabian, et al., | |
Machine Learning in Medical Imaging 2012. | |
Authors: Fabian Pedregosa <[email protected]> | |
Alexandre Gramfort <[email protected]> | |
See also https://github.com/fabianp/pysofia for a more efficient implementation | |
of RankSVM using stochastic gradient descent methdos. | |
""" | |
import itertools | |
import numpy as np | |
from sklearn import svm, linear_model, cross_validation | |
def transform_pairwise(X, y): | |
"""Transforms data into pairs with balanced labels for ranking | |
Transforms a n-class ranking problem into a two-class classification | |
problem. Subclasses implementing particular strategies for choosing | |
pairs should override this method. | |
In this method, all pairs are choosen, except for those that have the | |
same target value. The output is an array of balanced classes, i.e. | |
there are the same number of -1 as +1 | |
Parameters | |
---------- | |
X : array, shape (n_samples, n_features) | |
The data | |
y : array, shape (n_samples,) or (n_samples, 2) | |
Target labels. If it's a 2D array, the second column represents | |
the grouping of samples, i.e., samples with different groups will | |
not be considered. | |
Returns | |
------- | |
X_trans : array, shape (k, n_feaures) | |
Data as pairs | |
y_trans : array, shape (k,) | |
Output class labels, where classes have values {-1, +1} | |
""" | |
X_new = [] | |
y_new = [] | |
y = np.asarray(y) | |
if y.ndim == 1: | |
y = np.c_[y, np.ones(y.shape[0])] | |
comb = itertools.combinations(range(X.shape[0]), 2) | |
for k, (i, j) in enumerate(comb): | |
if y[i, 0] == y[j, 0] or y[i, 1] != y[j, 1]: | |
# skip if same target or different group | |
continue | |
X_new.append(X[i] - X[j]) | |
y_new.append(np.sign(y[i, 0] - y[j, 0])) | |
# output balanced classes | |
if y_new[-1] != (-1) ** k: | |
y_new[-1] = - y_new[-1] | |
X_new[-1] = - X_new[-1] | |
return np.asarray(X_new), np.asarray(y_new).ravel() | |
class RankSVM(svm.LinearSVC): | |
"""Performs pairwise ranking with an underlying LinearSVC model | |
Input should be a n-class ranking problem, this object will convert it | |
into a two-class classification problem, a setting known as | |
`pairwise ranking`. | |
See object :ref:`svm.LinearSVC` for a full description of parameters. | |
""" | |
def fit(self, X, y): | |
""" | |
Fit a pairwise ranking model. | |
Parameters | |
---------- | |
X : array, shape (n_samples, n_features) | |
y : array, shape (n_samples,) or (n_samples, 2) | |
Returns | |
------- | |
self | |
""" | |
X_trans, y_trans = transform_pairwise(X, y) | |
super(RankSVM, self).fit(X_trans, y_trans) | |
return self | |
def decision_function(self, X): | |
return np.dot(X, self.coef_.ravel()) | |
def predict(self, X): | |
""" | |
Predict an ordering on X. For a list of n samples, this method | |
returns a list from 0 to n-1 with the relative order of the rows of X. | |
The item is given such that items ranked on top have are | |
predicted a higher ordering (i.e. 0 means is the last item | |
and n_samples would be the item ranked on top). | |
Parameters | |
---------- | |
X : array, shape (n_samples, n_features) | |
Returns | |
------- | |
ord : array, shape (n_samples,) | |
Returns a list of integers representing the relative order of | |
the rows in X. | |
""" | |
if hasattr(self, 'coef_'): | |
return np.argsort(np.dot(X, self.coef_.ravel())) | |
else: | |
raise ValueError("Must call fit() prior to predict()") | |
def score(self, X, y): | |
""" | |
Because we transformed into a pairwise problem, chance level is at 0.5 | |
""" | |
X_trans, y_trans = transform_pairwise(X, y) | |
return np.mean(super(RankSVM, self).predict(X_trans) == y_trans) | |
if __name__ == '__main__': | |
# as showcase, we will create some non-linear data | |
# and print the performance of ranking vs linear regression | |
np.random.seed(1) | |
n_samples, n_features = 300, 5 | |
true_coef = np.random.randn(n_features) | |
X = np.random.randn(n_samples, n_features) | |
noise = np.random.randn(n_samples) / np.linalg.norm(true_coef) | |
y = np.dot(X, true_coef) | |
y = np.arctan(y) # add non-linearities | |
y += .1 * noise # add noise | |
Y = np.c_[y, np.mod(np.arange(n_samples), 5)] # add query fake id | |
cv = cross_validation.KFold(n_samples, 5) | |
train, test = iter(cv).next() | |
# make a simple plot out of it | |
import pylab as pl | |
pl.scatter(np.dot(X, true_coef), y) | |
pl.title('Data to be learned') | |
pl.xlabel('<X, coef>') | |
pl.ylabel('y') | |
pl.show() | |
# print the performance of ranking | |
rank_svm = RankSVM().fit(X[train], Y[train]) | |
print 'Performance of ranking ', rank_svm.score(X[test], Y[test]) | |
# and that of linear regression | |
ridge = linear_model.RidgeCV(fit_intercept=True) | |
ridge.fit(X[train], y[train]) | |
X_test_trans, y_test_trans = transform_pairwise(X[test], y[test]) | |
score = np.mean(np.sign(np.dot(X_test_trans, ridge.coef_)) == y_test_trans) | |
print 'Performance of linear regression ', score |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment