Last active
June 2, 2016 06:46
-
-
Save geekprogramming/e2e8b3f279086dec21deb0be8cfc77fb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Predict function | |
public static int[][] toIntArrayArray(BufferedImage image) { | |
int w = image.getWidth(); | |
int h = image.getHeight(); | |
int[][] ret = new int[h][w]; | |
int j; | |
if(image.getRaster().getNumDataElements() == 1) { | |
WritableRaster i = image.getRaster(); | |
for(j = 0; j < h; ++j) { | |
for(int j1 = 0; j1 < w; ++j1) { | |
ret[j][j1] = i.getSample(j1, j, 0); | |
} | |
} | |
} else { | |
for(int var8 = 0; var8 < h; ++var8) { | |
for(j = 0; j < w; ++j) { | |
ret[var8][j] = image.getRGB(j, var8); | |
} | |
} | |
} | |
return ret; | |
} | |
//Steps which appy data before train and then apply for predict | |
public static BufferedImage preprocess(BufferedImage img) { | |
opencv_core.Mat original = ImageOpenCvUtils.toMat(img); | |
opencv_core.Mat grayScale = ImageOpenCvUtils.toGray(original); | |
opencv_core.Mat maximizeContrast = ImageOpenCvUtils.maximizeContrastMat(grayScale, 1); | |
opencv_core.Mat output = new opencv_core.Mat(maximizeContrast.size(),maximizeContrast.type()); | |
opencv_imgproc.resize(maximizeContrast,output,new opencv_core.Size(23,43)); | |
return ImageOpenCvUtils.toBufferedImage(output); | |
} | |
public static double predict(BufferedImage img,MultiLayerNetwork model) { | |
img = preprocess(img); | |
int[][] ret = toIntArrayArray(img); | |
ImageLoader loader = new ImageLoader(); | |
INDArray input = ArrayUtil.toNDArray(ArrayUtil.flatten(ret)); | |
INDArray output = model.output(input); | |
output = Nd4j.argMax(output, 1); | |
return output.getDouble(0); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment