Created
November 23, 2016 18:58
-
-
Save geffy/a2195fb0c03d18618fe03cf6604f54a6 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gym | |
import numpy as np | |
env = gym.make('FrozenLake8x8-v0') | |
env.reset() | |
# find terminals | |
def find_terminals(mdp_raw): | |
terminals = set() | |
for src_state, node in mdp_raw.items(): | |
for action, action_tuple in node.items(): | |
for (prob, dst_state, reward, is_final) in action_tuple: | |
if is_final: | |
terminals.add(dst_state) | |
return terminals | |
def iterate_value_function(v_inp, gamma=0.98): | |
ret = np.zeros(64) | |
for sid in range(64): | |
temp_v = np.zeros(4) | |
# if sid not in terminals: | |
for action in range(4): | |
for (prob, dst_state, reward, is_final) in mdp_raw[sid][action]: | |
temp_v[action] += prob*(reward + gamma*v_inp[dst_state]*(not is_final)) | |
ret[sid] = max(temp_v) | |
return ret | |
def build_greedy_policy(v_inp, gamma=0.98): | |
new_policy = np.zeros(64) | |
for state_id in range(64): | |
profits = np.zeros(4) | |
for action in range(4): | |
for (prob, dst_state, reward, is_final) in mdp_raw[state_id][action]: | |
profits[action] += prob*(reward + gamma*v[dst_state]) | |
new_policy[state_id] = np.argmax(profits) | |
return new_policy | |
gamma = 0.999999 | |
v = np.zeros(64) | |
# copy info about env | |
mdp_raw = env.P.copy() | |
terminals = find_terminals(mdp_raw) | |
# solve MDP | |
for _ in range(5000): | |
v = iterate_value_function(v, gamma) | |
print(np.array_str(v.reshape(8, 8), precision=2, suppress_small=True)) | |
policy = build_greedy_policy(v, gamma).astype(np.int) | |
# run enviroment | |
# env.monitor.start('/tmp/frozenlake-vi', force=True) | |
cum_reward = 0 | |
for t_rounds in range(100000): | |
env.reset() | |
observation = 0 | |
for t in range(20000): | |
action = policy[observation] | |
observation, reward, done, info = env.step(action) | |
if done: | |
cum_reward += reward | |
break | |
# env.monitor.close() | |
print(cum_reward) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment