Created
October 23, 2019 04:36
-
-
Save genekogan/53eab74f004e36f6e3db5f182678c94d to your computer and use it in GitHub Desktop.
(w.i.p.) Federated variational autoencoder with PySyft
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision | |
from torchvision import transforms | |
from torchvision.utils import save_image | |
from torch.autograd import Variable | |
import syft as sy | |
# bob & alice | |
hook = sy.TorchHook(torch) | |
bob = sy.VirtualWorker(hook, id="bob") | |
alice = sy.VirtualWorker(hook, id="alice") | |
# Device configuration | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
kwargs = {'num_workers': 1, 'pin_memory': True} if torch.cuda.is_available() else {} | |
# model & training parameters | |
image_size = 784 | |
h_dim = 400 | |
z_dim = 20 | |
num_epochs = 10 | |
batch_size = 64 | |
learning_rate = 1e-3 | |
# data loader | |
federated_train_loader = sy.FederatedDataLoader( # <-- this is now a FederatedDataLoader | |
torchvision.datasets.MNIST(root='../data', | |
train=True, download=True, transform=transforms.ToTensor()) | |
.federate((bob, alice)), | |
batch_size=batch_size, shuffle=True, **kwargs) | |
class VAE(nn.Module): | |
def __init__(self, image_size=784, h_dim=400, z_dim=20): | |
super(VAE, self).__init__() | |
self.fc1 = nn.Linear(image_size, h_dim) | |
self.fc2 = nn.Linear(h_dim, z_dim) | |
self.fc3 = nn.Linear(h_dim, z_dim) | |
self.fc4 = nn.Linear(z_dim, h_dim) | |
self.fc5 = nn.Linear(h_dim, image_size) | |
def encode(self, x): | |
h = F.relu(self.fc1(x)) | |
return self.fc2(h), self.fc3(h) | |
def reparameterize(self, mu, log_var): | |
std = torch.exp(log_var/2) | |
eps = torch.randn_like(std) | |
return mu + eps * std | |
def decode(self, z): | |
h = F.relu(self.fc4(z)) | |
return F.sigmoid(self.fc5(h)) | |
def forward(self, x): | |
mu, log_var = self.encode(x) | |
z = self.reparameterize(mu, log_var) | |
x_reconst = self.decode(z) | |
return x_reconst, mu, log_var | |
model = VAE().to(device) | |
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) | |
for epoch in range(num_epochs): | |
for batch_idx, (data, target) in enumerate(federated_train_loader): | |
model.send(data.location) | |
data, target = data.to(device).view(-1, image_size), target.to(device) | |
x_reconst, mu, log_var = model(data) | |
reconst_loss = F.binary_cross_entropy(x_reconst, data, size_average=False) | |
kl_div = - 0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) | |
# backward | |
loss = reconst_loss + kl_div | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
model.get() | |
if (batch_idx+1) % 10 == 0: | |
print ("Epoch[{}/{}], Step [{}/{}], Reconst Loss: {:.4f}, KL Div: {:.4f}" | |
.format(epoch+1, num_epochs, batch_idx+1, len(federated_train_loader), reconst_loss.get(), kl_div.get())) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Issue: Using
randn_like
in the model results aTensorsNotCollocatedException
at line 52 becauseeps = torch.randn_like(std)
is unexpectedly returned as a local tensor rather than a pointer to the worker machine. This would be fixed by removingrandn_like
from the list of torch functions excluded from the syft hook.