Created
November 2, 2016 13:34
-
-
Save geneorama/65b714ffde41ed0c9da57fb4c98ac22a to your computer and use it in GitHub Desktop.
Heap your criticisms here
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
grid_glmnet <- expand.grid(alpha = c(0, .2, .4, .6, .8, 1), | |
# lambda = seq(.01, .2, length = 40)) | |
#lambda = rev(exp(seq(log(.00001), log(200), length=10))) | |
lambda = rev(exp(seq(log(.00001), log(20), length=20)))) | |
results_glmnet <- list() | |
# g <- unique(dat$grp)[1] | |
# i <- 1 | |
for(i in 1:nrow(grid_glmnet)){ | |
print(i) | |
results_glmnet[[i]] <- list() ## Placeholder for ith parameter set | |
results_glmnet[[i]][["cv"]] <- list() ## Placeholder for CV results | |
results_glmnet[[i]][['param']] <- grid_glmnet[i,] | |
params <- results_glmnet[[i]][['param']] | |
for(g in unique(dat$grp)){ | |
## Run model | |
xmat_train <- dat[!(grp == g), .SD, .SDcols=-c("grp","date","id", "wnv")] | |
ymat_train <- dat[!(grp == g), wnv] | |
m <- glmnet(x = as.matrix(xmat_train), | |
y = as.matrix(ymat_train), | |
family = "binomial", | |
alpha = params$alpha, | |
lambda = params$lambda) | |
xmat_test <- dat[(grp == g), .SD, .SDcols=-c("grp","date","id", "wnv")] | |
ymat_test <- dat[(grp == g), wnv] | |
yhat_test <- predict(m, as.matrix(xmat_test), type = "response")[,1] | |
## Store results | |
results_glmnet[[i]][["cv"]][[g]] <- list() | |
results_glmnet[[i]][["cv"]][[g]][["model"]] <- m | |
results_glmnet[[i]][["cv"]][[g]][["xmat_train"]] <- xmat_train | |
results_glmnet[[i]][["cv"]][[g]][["ymat_train"]] <- ymat_train | |
results_glmnet[[i]][["cv"]][[g]][["xmat_test"]] <- xmat_test | |
results_glmnet[[i]][["cv"]][[g]][["ymat_test"]] <- ymat_test | |
results_glmnet[[i]][["cv"]][[g]][["yhat_test"]] <- yhat_test | |
} | |
} | |
# rm(i, g, m, xmat_test, xmat_train, ymat_test, ymat_train) | |
lll() | |
## Example structure | |
# results_glmnet[[1]]$cv$year2008$model$a0 | |
# str(results_glmnet, 2) | |
# sapply(results_glmnet, function(l) sapply(l$cv, function(x)x$model$lambda)) | |
names(results_glmnet[[1]]) | |
## Model metrics | |
a0_yearly <- t(sapply(results_glmnet, function(l)sapply(l$cv, function(x) unname(x$model$a0)))) | |
nulldev_yearly <- t(sapply(results_glmnet, function(l)sapply(l$cv, function(x)x$model$nulldev))) | |
devratio_yearly <- t(sapply(results_glmnet, function(l)sapply(l$cv, function(x)x$model$dev.ratio))) | |
## Predictions and RMSE | |
preds <- lapply(results_glmnet, function(l) lapply(l$cv, function(x) x$yhat_test)) | |
preds <- lapply(preds, unsplit, dat$grp) | |
preds <- do.call(cbind, preds) | |
ymat_test <- lapply(results_glmnet, function(l) lapply(l$cv, function(x) x$ymat_test)) | |
ymat_test <- lapply(ymat_test, unsplit, dat$grp) | |
ymat_test <- do.call(cbind, ymat_test) | |
err <- (preds - ymat_test) | |
errsqrd <- (err) ^ 2 | |
rmse_mean <- sqrt(apply(errsqrd, 2, mean)) | |
rmse_yearly <- t(apply(errsqrd, 2, function(col) | |
sapply(split(col, dat$grp), function(e) sqrt(mean(e))))) | |
## AUC and ROC based on predictions | |
metrics <- lapply(results_glmnet, function(l) lapply(l$cv, function(x) | |
calculate_metrics(x$ymat_test, x$yhat_test))) | |
auc_yearly <- t(sapply(metrics, function(l) sapply(l, `[[`, "auc"))) | |
roc_yearly <- t(sapply(metrics, function(l) sapply(l, `[[`, "roc"))) | |
kappa_yearly <- t(sapply(metrics, function(l) sapply(l, `[[`, "kappa"))) | |
## Overall results | |
a0_mean <- apply(a0_yearly, 1, mean) | |
nulldev_mean <- apply(nulldev_yearly, 1, mean) | |
devratio_mean <- apply(devratio_yearly, 1, mean) | |
auc_mean <- apply(auc_yearly, 1, mean) | |
roc_mean <- apply(roc_yearly, 1, mean) | |
kappa_mean <- apply(kappa_yearly, 1, mean) | |
result_summary <- data.table(grid_glmnet, a0_mean, nulldev_mean, devratio_mean, | |
auc_mean, roc_mean, rmse_mean) | |
result_summary |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment